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About this Tutorial 

Automata Theory is a branch of computer science that deals with designing 

abstract self-propelled computing devices that follow a predetermined sequence 

of operations automatically. An automaton with a finite number of states is 

called a Finite Automaton.   

This is a brief and concise tutorial that introduces the fundamental concepts of 

Finite Automata, Regular Languages, and Pushdown Automata before moving 

onto Turing machines and Decidability.  

Audience 

This tutorial has been prepared for students pursuing a degree in any 

information technology or computer science related field. It attempts to help 

students grasp the essential concepts involved in automata theory.   

Prerequisites 

This tutorial has a good balance between theory and mathematical rigor. The 

readers are expected to have a basic understanding of discrete mathematical 

structures.  

Copyright & Disclaimer 

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of 

Tutorials Point (I) Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, 

copy, distribute or republish any contents or a part of contents of this e-book in 

any manner without written consent of the publisher.   

We strive to update the contents of our website and tutorials as timely and as 

precisely as possible, however, the contents may contain inaccuracies or errors. 

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, 

timeliness or completeness of our website or its contents including this tutorial. 

If you discover any errors on our website or in this tutorial, please notify us at 

contact@tutorialspoint.com 
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Automata – What is it? 

The term "Automata" is derived from the Greek word "αὐτόματα" which means 

"self-acting". An automaton (Automata in plural) is an abstract self-propelled 

computing device which follows a predetermined sequence of operations 

automatically. 

An automaton with a finite number of states is called a Finite Automaton (FA) 

or Finite State Machine (FSM). 

Formal definition of a Finite Automaton 

An automaton can be represented by a 5-tuple (Q, Σ, δ, q0, F), where: 

 Q is a finite set of states.  

 Σ is a finite set of symbols, called the alphabet of the automaton.  

 δ is the transition function.  

 q0 is the initial state from where any input is processed (q0 ∈ Q).  

 F is a set of final state/states of Q (F ⊆ Q). 

Related Terminologies 

Alphabet 

 Definition: An alphabet is any finite set of symbols.  

 

 Example: Σ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ 

are alphabets. 

String 

 Definition: A string is a finite sequence of symbols taken from Σ.   

 

 Example: ‘cabcad’ is a valid string on the alphabet set Σ = {a, b, c,d} 

Length of a String 

 Definition : It is the number of symbols present in a string. (Denoted by 

|S|). 

1. INTRODUCTION 
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 Examples:  

 

o If S=‘cabcad’, |S|= 6   

 

o If |S|= 0, it is called an empty string (Denoted by λ or ε)  

Kleene Star  

 Definition: The set Σ* is the infinite set of all possible strings of all 

possible lengths over Σ including λ. 

 

 Representation: Σ* = Σ0 U Σ1 U Σ2 U……. 

 

 Example: If Σ = {a, b}, Σ*= {λ, a, b, aa, ab, ba, bb,………..} 

Kleene Closure / Plus  

 Definition: The set Σ+ is the infinite set of all possible strings of all 

possible lengths over Σ excluding λ. 

 

 Representation:  Σ+ = Σ0 U Σ1 U Σ2 U……. 

Σ+
  = Σ* − { λ } 

 

 Example: If  Σ = { a, b } , Σ+ ={  a, b, aa, ab, ba, bb,………..} 

Language  

 Definition : A language is a subset of Σ* for some alphabet Σ. It can be 

finite or infinite. 

 

 Example : If the language takes all possible strings of length 2 over Σ = 

{a, b}, then L = { ab, bb, ba, bb}  

Deterministic and Nondeterministic Finite Automaton 

Finite Automaton can be classified into two types:  

 Deterministic Finite Automaton (DFA) 

 Non-deterministic Finite Automaton (NDFA / NFA) 

Deterministic Finite Automaton (DFA) 

In DFA, for each input symbol, one can determine the state to which the 

machine will move. Hence, it is called Deterministic Automaton. As it has a 
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finite number of states, the machine is called Deterministic Finite Machine or 

Deterministic Finite Automaton.  

Formal Definition of a DFA 

A DFA can be represented by a 5-tuple (Q, Σ, δ, q0, F) where: 

 Q is a finite set of states.  

 Σ is a finite set of symbols called the alphabet.  

 δ is the transition function  where δ: Q × Σ → Q 

 q0 is the initial state from where any input is processed (q0 ∈ Q).  

 F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of a DFA 

A DFA is represented by digraphs called state diagram.  

 The vertices represent the states. 

 The arcs labeled with an input alphabet show the transitions.  

 The initial state is denoted by an empty single incoming arc. 

 The final state is indicated by double circles. 

Example   

Let a deterministic finite automaton be  

 Q = {a, b, c},  

 Σ = {0, 1}, 

 q0={a}, 

 F={c}, and 

 Transition function δ as shown by the following table: 

Present State Next State for 
Input 0 

Next State for 
Input 1 

A a b 

B c a 

C b c 
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Its graphical representation would be as follows:  

 

DFA – Graphical Representation 

Non-deterministic Finite Automaton (NDFA) 

In NDFA, for a particular input symbol, the machine can move to any 

combination of the states in the machine. In other words, the exact state to 

which the machine moves cannot be determined. Hence, it is called Non-

deterministic Automaton. As it has finite number of states, the machine is 

called Non-deterministic Finite Machine or Non-deterministic Finite 

Automaton. 

Formal Definition of an NDFA 

An NDFA can be represented by a 5-tuple (Q, Σ, δ, q0, F) where: 

 Q is a finite set of states.  

 

 Σ is a finite set of symbols called the alphabets.  

 

 δ is the transition function  where δ: Q × {Σ U ε} → 2Q  

(Here the power set of Q (2Q) has been taken because in case of NDFA, 

from a state, transition can occur to any combination of Q states) 

 

 q0 is the initial state from where any input is processed (q0 ∈ Q).  

 

 F is a set of final state/states of Q (F ⊆ Q). 

Graphical Representation of an NDFA: (same as DFA) 

An NDFA is represented by digraphs called state diagram.  

 The vertices represent the states. 

 The arcs labeled with an input alphabet show the transitions.  

 The initial state is denoted by an empty single incoming arc. 

  a   b  c 

0 

1 0 

0 

1 

1 
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 The final state is indicated by double circles. 

Example  

Let a non-deterministic finite automaton be    

 Q = {a, b, c}  

 Σ = {0, 1}  

 q0 = {a}  

 F={c}  

 The transition function  as shown below: 

Present State 
Next State for 

Input 0 
Next State for 

Input 1 

a a, b b 

b c a, c 

c b, c c 

 

Its graphical representation would be as follows: 

                                  

NDFA – Graphical Representation 

DFA vs NDFA 

The following table lists the differences between DFA and NDFA. 

DFA NDFA 

The transition from a state is to a single 

particular next state for each input 

symbol. Hence it is called deterministic. 

The transition from a state can be to 

multiple next states for each input symbol. 

Hence it is called non-deterministic. 

Empty string transitions are not seen in 

DFA. 
NDFA permits empty string transitions. 

Backtracking is allowed in DFA 
In NDFA, backtracking is not always 

possible. 

  a   b  c 

0 
0, 1  

0 

 

1 

0, 1 
0, 1 
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Requires more space. Requires less space. 

A string is accepted by a DFA, if it transits 

to a final state.  

A string is accepted by a NDFA, if at least 

one of all possible transitions ends in a 

final state. 

Acceptors, Classifiers, and Transducers 

Acceptor (Recognizer)  

An automaton that computes a Boolean function is called an acceptor. All the 

states of an acceptor is either accepting or rejecting the inputs given to it. 

Classifier  

A classifier has more than two final states and it gives a single output when it 

terminates. 

Transducer  

An automaton that produces outputs based on current input and/or previous 

state is called a transducer. Transducers can be of two types: 

 Mealy Machine  The output depends both on the current state and the 

current input. 

 

 Moore Machine  The output depends only on the current state. 

Acceptability by DFA and NDFA 

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the initial state 

ends in an accepting state (any of the final states) after reading the string 

wholly.  

A string S is accepted by a DFA/NDFA (Q, Σ, δ, q0, F), iff  

δ*(q0, S) ∈ F  

The language L accepted by DFA/NDFA is   

{S | S ∈ Σ*  and  δ*(q0, S) ∈ F} 

A string S′ is not accepted by a DFA/NDFA (Q, Σ, δ, q0, F), iff  

δ*(q0, S′) ∉ F  

The language L′ not accepted by DFA/NDFA (Complement of accepted language 

L) is  

{S | S ∈ Σ* and δ*(q0, S) ∉ F} 
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Example  

Let us consider the DFA shown in Figure 1.3. From the DFA, the acceptable 

strings can be derived. 

 
Acceptability of strings by DFA 

 

Strings accepted by the above DFA: {0, 00, 11, 010, 101, ...........} 

Strings not accepted by the above DFA: {1, 011, 111, ........} 

Converting an NDFA to an Equivalent DFA 

Problem Statement 

Let X = (Qx, Σ, δx, q0, Fx) be an NDFA which accepts the language L(X). We 

have to design an equivalent DFA Y = (Qy, Σ, δy, q0, Fy) such that L(Y) = L(X). 

The following procedure converts the NDFA to its equivalent DFA: 

Algorithm 1 

Input:  An NDFA 

Output:  An equivalent DFA 

Step 1  Create state table from the given NDFA. 

Step 2  Create a blank state table under possible input alphabets for the 

equivalent DFA.  

Step 3  Mark the start state of the DFA by q0 (Same as the NDFA).  

Step 4  Find out the combination of States {Q0, Q1,... , Qn} for each 

possible input alphabet. 

Step 5  Each time we generate a new DFA state under the input alphabet 

columns, we have to apply step 4 again, otherwise go to step 6. 

  c 

d 

1 

1 

  0 

0 

0 

a 

1 
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Step 6  The states which contain any of the final states of the NDFA are the 

final states of the equivalent DFA. 

Example  

Let us consider the NDFA shown in the figure below.  

 

q δ(q,0) δ(q,1) 

aa {{aa,,bb,,cc,,dd,,ee}} {{dd,,ee}} 

bb {{cc}} {{ee}} 

cc ∅ {{bb}} 

dd {{ee}} ∅ 

ee ∅ ∅ 

 

Using Algorithm 1, we find its equivalent DFA. The state table of the DFA is 

shown in below.  

q δ(q,0) δ(q,1) 

aa {{aa,,bb,,cc,,dd,,ee}} {{dd,,ee}} 

{{aa,,bb,,cc,,dd,,ee}} {{aa,,bb,,cc,,dd,,ee}} {{bb,,dd,,ee}} 

{{dd,,ee}} ee DD 

{{bb,,dd,,ee}} {{cc,,ee}} EE 

ee ∅ ∅ 

dd ee ∅ 

{{cc,,ee}} ∅ BB 

bb cc EE 

cc ∅ BB 

 

State table of DFA equivalent to NDFA  
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The state diagram of the DFA is as follows: 

 

 
State diagram of DFA  

DFA Minimization using Myhill-Nerode Theorem 

Algorithm 2 

Input  DFA 

Output  Minimized DFA 

Step 1  Draw a table for all pairs of states (Qi, Qj) not necessarily connected 

directly [All are unmarked initially] 

Step 2  Consider every state pair (Qi, Qj) in the DFA where Qi ∈ F and Qj ∉ F 

or vice versa and mark them. [Here F is the set of final states] 

Step 3  Repeat this step until we cannot mark anymore states: 

If there is an unmarked pair (Qi, Qj), mark it if the pair {δ(Qi, A), 

δ (Qi, A)} is marked for some input alphabet. 

Step 4  Combine all the unmarked pair (Qi, Qj) and make them a single 

state in the reduced DFA.  

 

 

{b,d,e} 

 {a} 

{d} 
{e} 

{a,b,c,d,e} {c,e} 

{d,e} {c} {b} 

0 

0 

1 

1 

1 

0 

0 

1 1 

1 

1 

0 

0 
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Example  

Let us use Algorithm 2 to minimize the DFA shown below.  

 
State Diagram of DFA 

 

Step 1 :  We draw a table for all pair of states. 

 a b c d e f 

a       

b       

c       

d       

e       

f       

Step 2 : We mark the state pairs: 

 a b c d e f 

a       

b          

c ✓ ✓     

d ✓ ✓     

e ✓ ✓     

f   ✓ ✓ ✓  

 

Step 3 : We will try to mark the state pairs, with green colored check mark, 

transitively. If we input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and ‘f’ 

respectively. (c, f) is already marked, hence we will mark pair (a, f). Now, we 

input 1 to state ‘b’ and ‘f’; it will go to state ‘d’ and ‘f’ respectively. (d, f) is 

already marked, hence we will mark pair (b, f). 

 a b c d e f 

a       

b          

  b 

  a 

  f  d 

 

 c 

 

e 

1 

1 

1 

1 

1 

0, 1 

0 

0 0 

0 

0 
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c ✓ ✓     

d ✓ ✓     

e ✓ ✓     

f ✓ ✓ ✓ ✓ ✓  

 

After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that 

are unmarked. 

We can recombine {c, d} {c, e} {d, e} into {c, d, e} 

Hence we got two combined states as: {a, b} and {c, d, e} 

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e} 

 

 
 

State diagram of reduced DFA 

DFA Minimization using Equivalence Theorem 

If X and Y are two states in a DFA, we can combine these two states into {X, Y} 

if they are not distinguishable. Two states are distinguishable, if there is at least 

one string S, such that one of δ (X, S) and δ (Y, S) is accepting and another is 

not accepting. Hence, a DFA is minimal if and only if all the states are 

distinguishable. 

Algorithm 3 

Step 1:  All the states Q are divided in two partitions: final states and non-

final states and are denoted by P0. All the states in a partition are 

0th equivalent. Take a counter k and initialize it with 0. 

Step 2:   Increment k by 1. For each partition in Pk, divide the states in Pk 

into two partitions if they are k-distinguishable. Two states within 

this partition X and Y are k-distinguishable if there is an input S 

such that δ(X, S) and δ(Y, S) are (k-1)-distinguishable.  

(a, b) 

(f) 

1 

1 

0, 1 

0, 1 

0 

   (c, d, e) 
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Step 3:   If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.  

Step 4:   Combine kth equivalent sets and make them the new states of the 

reduced DFA. 

Example  

Let us consider the following DFA: 

 

 q δ(q,0) δ(q,1) 

aa bb cc 

bb aa dd 

cc e ff 

dd ee ff 

ee e f 

ff  f f 

                                           

DFA 

Let us apply Algorithm 3 to the above DFA:  

 P0 = {(c,d,e), (a,b,f)} 

 P1 = {(c,d,e), (a,b),(f)} 

 P2 = {(c,d,e), (a,b),(f)} 

Hence, P1 = P2.  

There are three states in the reduced DFA. The reduced DFA is as follows: 

 

 

State Table and State Diagram of Reduced DFA 

 

Q δ(q,0) δ(q,1) 

(a, b) (a, b) (c,d,e) 

(c,d,e) (c,d,e) ((ff)) 

((ff)) ((ff)) ((ff)) 

  b 

  a 

  f  d 

 

 c 

 

e 

1 

1 

1 

1 

1 

0, 1 

0 

0 0 

0 

0 

(a, b) 

(f) 

1 

1 
0,1 

0 

   (c, d, e) 

0, 1 
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Moore and Mealy Machines 

Finite automata may have outputs corresponding to each transition. There are 

two types of finite state machines that generate output: 

 Mealy Machine 

 Moore machine 

Mealy Machine 

A Mealy Machine is an FSM whose output depends on the present state as well 

as the present input. 

It can be described by a 6 tuple (Q, Σ, O, δ, X, q0) where: 

 Q is a finite set of states.  

 Σ is a finite set of symbols called the input alphabet. 

 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function  where δ: Q × Σ → Q 

 X is the output transition function  where X: Q → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q).  

The state diagram of a Mealy Machine is shown below:  

 

State diagram of a Mealy Machine 

Moore Machine 

Moore machine is an FSM whose outputs depend on only the present state. 

A Moore machine can be described by a 6 tuple (Q, Σ, O, δ, X, q0) where: 

 Q is a finite set of states.  

 Σ is a finite set of symbols called the input alphabet. 

  a   d 

 b 

 

 c 

 

0 

/x1 

1 

/x1 

1 

/x3 

0 

/x2 

1 

/x1 

0 

/x3 

0/x3, 1 

/x2  
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 O is a finite set of symbols called the output alphabet. 

 δ is the input transition function  where δ: Q × Σ → Q 

 X is the output transition function  where X: Q× Σ → O 

 q0 is the initial state from where any input is processed (q0 ∈ Q).  

The state diagram of a Moore Machine is shown below: 

 

State diagram of a Moore Machine 

 

Mealy Machine vs. Moore Machine 

The following table highlights the points that differentiate a Mealy Machine from 

a Moore Machine. 

Mealy Machine Moore Machine 

Output depends both upon present 
state and present input. 

Output depends only upon the present 
state. 

Generally, it has fewer states than 
Moore Machine. 

Generally, it has more states than 
Mealy Machine. 

Output changes at the clock edges. Input change can cause change in 
output change as soon as logic is 

done. 

Mealy machines react faster to 
inputs 

In Moore machines, more logic is 
needed to decode the outputs since it 

has more circuit delays. 

  a/ λ 
 d /x3 

 b/x1 

 

 c/x2 

 

0  

1  

1  

0  

1 

0  

0, 1  
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Moore Machine to Mealy Machine 

Algorithm 4  

Input:   Moore Machine 

Output:   Mealy Machine 

Step 1  Take a blank Mealy Machine transition table format. 

Step 2  Copy all the Moore Machine transition states into this table format. 

Step 3  Check the present states and their corresponding outputs in the 

Moore Machine state table; if for a state Qi output is m, copy it into 

the output columns of the Mealy Machine state table wherever Qi 

appears in the next state. 

Example  

Let us consider the following Moore machine: 

Present 

State 

Next State 
Output 

a = 0 a = 1 

a d b 1 

b a d 0 

c c c 0 

d b a 1 

State table of a Moore Machine 

 

Now we apply Algorithm 4 to convert it to Mealy Machine. 

Step 1 & 2: 

Present State 

Next State 

a = 0 a = 1 

State Output State Output 

a d 
 

b 
 

B a 
 

d 
 

c c 
 

c 
 

d b 
 

a 
 

 

The partial state table after steps 1 and 2 
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Step 3: 

Present State 

Next State 

a = 0 a = 1 

State Output State Output 

=> a d 1 b 0 

b a 1 d 1 

c c 0 c 0 

d b 0 a 1 

 

State table of an equivalent Mealy Machine 

Mealy Machine to Moore Machine 

Algorithm 5:  

Input:   Mealy Machine 

Output:   Moore Machine 

Step 1  Calculate the number of different outputs for each state (Qi) that 

are available in the state table of the Mealy machine. 

Step 2  If all the outputs of Qi are same, copy state Qi. If it has n distinct 

outputs, break Qi into n states as Qin where n = 0, 1, 2....... 

Step 3  If the output of the initial state is 1, insert a new initial state at the 

beginning which gives 0 output. 

Example  

Let us consider the following Mealy Machine: 

Present 

State 

Next State 

 

a = 0 a = 1 

Next 

State 
Output 

Next 

State 
Output 

a d 0 b 1 

b a 1 d 0 

c c 1 c 0 

d b 0 a 1 

State table of a Mealy Machine 

Here, states ‘a’ and ‘d’ give only 1 and 0 outputs respectively, so we retain 

states ‘a’ and ‘d’. But states ‘b’ and ‘c’ produce different outputs (1 and 0). So, 

we divide b into b0, b1 and c into c0, c1. 
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Present 

State 

Next State 
Output 

a = 0 a = 1 

 a d b1 1 

b0 a d 0 

b1 a d 1 

c0 c1 c0 0 

c1 c1 c0 1 

d b0 a 0 

State table of equivalent Moore Machine 
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In the literary sense of the term, grammars denote syntactical rules for 

conversation in natural languages. Linguistics have attempted to define 

grammars since the inception of natural languages like English, Sanskrit, 

Mandarin, etc. The theory of formal languages finds its applicability extensively 

in the fields of Computer Science. Noam Chomsky gave a mathematical model 

of grammar in 1956 which is effective for writing computer languages. 

Grammar 

A grammar G can be formally written as a 4-tuple (N, T, S, P) where 

 N or VN is a set of Non-terminal symbols 

 T or  is a set of Terminal symbols 

 S is the Start symbol, S ∈ N 

 P is Production rules for Terminals and Non-terminals 

Example  

Grammar G1:   

({S, A, B}, {a, b}, S, {S →AB, A →a, B →b})   

Here,  

S, A, and B are Non-terminal symbols;  

a and b are Terminal symbols 

S is the Start symbol, S ∈ N 

Productions, P : S →AB, A →a, B →b 

Example: 

Grammar G2:  

({S, A}, {a, b}, S,{S → aAb, aA →aaAb, A→ε } )   

Here,  

S and A are Non-terminal symbols. 

a and b are Terminal symbols.  

ε is an empty string. 

2. CLASSIFICATION OF GRAMMARS 
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S is the Start symbol, S ∈ N 

Production P : S → aAb, aA →aaAb, A→ε 

Derivations from a Grammar 

Strings may be derived from other strings using the productions in a grammar. 

If a grammar G has a production α  β, we can say that x α y derives x β y in 

G. This derivation is written as: 

𝒙𝜶𝒚 
𝑮
⇒  𝒙𝜷𝒚 

Example 

Let us consider the grammar:  

G2 = ({S, A}, {a, b}, S, {S → aAb, aA →aaAb, A→ε } )   

Some of the strings that can be derived are: 

S  aAb  using production S  aAb 

    aaAbb  using production aA  aAb 

    aaaAbbb using production aA  aAb 

    aaabbb  using production A  ε 

Language Generated by a Grammar 

The set of all strings that can be derived from a grammar is said to be the 

language generated from that grammar. A language generated by a grammar G 

is a subset formally defined by  

𝐿(𝐺) = { 𝑊 | 𝑊 ∈  Σ∗ , 𝑆 
𝐺
⇒  𝑊 } 

If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2. 

Example  

If there is a grammar  

G:  N = {S, A, B}    T = {a, b}    P = {S →AB, A →a, B →b}   

Here S produces AB, and we can replace A by a, and B by b. Here, the only 

accepted string is ab, i.e.,  

L(G) = {ab} 
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Example  

Suppose we have the following grammar:  

G:  N={S, A, B}    T= {a, b}    P= {S →AB, A →aA|a, B →bB|b}   

The language generated by this grammar:  

L(G) = {ab, a2b, ab2, a2b2, ………} 

Construction of a Grammar Generating a Language 

We’ll consider some languages and convert it into a grammar G which produces 

those languages. 

Example 

Problem Suppose, L (G) = {am bn | m ≥ 0 and n > 0}. We have to find out 

the grammar G which produces L(G). 

Solution 

Since L(G) = {am bn | m ≥ 0 and n > 0}  

the set of strings accepted can be rewritten as: 

L(G) = {b, ab,bb, aab, abb,  …….} 

Here, the start symbol has to take at least one ‘b’ preceded by any number of ‘a’ 

including null. 

To accept the string set {b, ab,bb, aab, abb, …….}, we have taken the 

productions:  

S →aS , S →B, B → b and B → bB   

S →B→ b (Accepted) 

S →B→ bB  → bb (Accepted) 

S →aS →aB→ab (Accepted) 

S →aS →aaS →aaB → aab(Accepted) 

S →aS →aB→abB→ abb (Accepted) 

Thus, we can prove every single string in L(G) is accepted by the language 

generated by the production set. 

Hence the grammar:  

G:  ({S, A, B}, {a, b}, S, { S →aS | B ,  B → b | bB })  
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Example 

Problem: Suppose, L (G) = {am bn | m> 0 and n ≥ 0}. We have to find out 

the grammar G which produces L(G). 

Solution: 

Since L(G) = {am bn | m> 0 and n ≥ 0}, the set of strings accepted can be 

rewritten as: 

L(G) = {a, aa, ab, aaa, aab ,abb,   …….} 

Here, the start symbol has to take at least one ‘a’ followed by any number of ‘b’ 

including null. 

To accept the string set {a, aa, ab, aaa, aab, abb, …….}, we have taken the 

productions:  

S → aA, A → aA , A → B, B →  bB ,B → λ 

S → aA → aB→ aλ→a (Accepted) 

S → aA → aaA→ aaB → aaλ→aa (Accepted) 

S →aA →aB→abB→ abλ → ab (Accepted) 

S → aA → aaA→ aaaA→aaaB → aaaλ→aaa (Accepted) 

S → aA → aaA→ aaB→aabB → aabλ→aab (Accepted) 

S → aA → aB→ abB→abbB → abbλ→abb (Accepted) 

 
Thus, we can prove every single string in L(G) is accepted by the language 

generated by the production set. 

Hence the grammar:  

G:  ({S, A, B}, {a, b}, S, {S → aA, A → aA | B,  B → λ | bB })  
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Chomsky Classification of Grammars 

According to Noam Chomosky, there are four types of grammars: Type 0, Type 

1, Type 2, and Type 3. The following table shows how they differ from each 

other: 

Grammar 

Type 

Grammar  

Accepted 

Language  

Accepted 

Automaton 

 

Type 0 

 

 

Unrestricted grammar 

 

Recursively 

enumerable language 

 

Turing machine 

 

Type 1 

 

 

Context-sensitive 

grammar 

 

Context-sensitive 

language 

 

Linear-bounded 

automaton 

 

Type 2 

 

 

Context-free grammar 

 

Context-free language 

 

Pushdown 

automaton 

 

Type 3 

 

 

Regular grammar 

 

Regular language 

 

Finite state 

automaton 

 

Take a look at the following illustration. It shows the scope of each type of 

grammar: 
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Containment of Type 3 ⊆ Type 2 ⊆ Type 1 ⊆ Type 0 

Type - 3 Grammar 

Type-3 grammars generate regular languages. Type-3 grammars must have a 

single non-terminal on the left-hand side and a right-hand side consisting of a 

single terminal or single terminal followed by a single non-terminal. 

The productions must be in the form X → a or X → aY  

where  X, Y ∈ N (Non terminal)  

and   a ∈ T (Terminal) 

The rule S → ε is allowed if S does not appear on the right side of any rule.  

Example 

X → ε 

X → a 

X → aY 

Type - 2 Grammar 

Type-2 grammars generate context-free languages.  

The productions must be in the form A → γ  

Recursively Enumerable 

Regular 

 

 

Context - Free 

Context-Sensitive 
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where  A ∈ N (Non terminal)  

and   γ ∈ (T∪N)* (String of terminals and non-terminals).  

These languages generated by these grammars are be recognized by a non-

deterministic pushdown automaton.  

Example 

S → X a 

X → a 

X → aX 

X → abc 

X → ε 

Type - 1 Grammar 

Type-1 grammars generate context-sensitive languages. The productions must 

be in the form  

α A β → α γ β  

where  A ∈ N (Non-terminal)  

and  α, β, γ ∈ (T ∪ N)* (Strings of terminals and non-terminals)  

The strings α and β may be empty, but γ must be non-empty. 

The rule S → ε is allowed if S does not appear on the right side of any rule. The 

languages generated by these grammars are recognized by a linear bounded 

automaton. 

Example 

AB → AbBc 

A → bcA 

B → b 

Type - 0 Grammar 

Type-0 grammars generate recursively enumerable languages. The 

productions have no restrictions. They are any phase structure grammar 

including all formal grammars.  
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They generate the languages that are recognized by a Turing machine. 

The productions can be in the form of α→ β where α is a string of terminals and 

non-terminals with at least one non-terminal and α cannot be null. β is a string 

of terminals and non-terminals. 

Example 

S → ACaB 

Bc → acB 

CB → DB 

aD → Db 
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Regular Expressions 

A Regular Expression can be recursively defined as follows:  

1. ε is a Regular Expression indicates the language containing an empty 

string. (L (ε) = {ε}) 

 

2. φ is a Regular Expression denoting an empty language. (L (φ) = { }) 

 

3. x is a Regular Expression where L={x} 

 

4. If X is a Regular Expression denoting the language L(X) and Y is a Regular 

Expression denoting the language L(Y), then 

 

(a) X + Y is a Regular Expression corresponding to the language 

L(X) U L(Y) where L(X+Y) = L(X) U L(Y).  

 

(b) X . Y is a Regular Expression corresponding to the language 

L(X) . L(Y) where L(X.Y)= L(X) . L(Y) 

 

(c) R* is a Regular Expression corresponding to the language L(R*) 

where L(R*) = (L(R))*  

5. If we apply any of the rules several times from 1 to 5, they are Regular 

Expressions. 

Some RE Examples 

 

Regular 

Expression 

 

Regular Set 

 

(0+10*) 

 

L= { 0, 1, 10, 100, 1000, 10000, … } 

 

(0*10*) 

 

L={1, 01, 10, 010, 0010, …}     

 

(0+ε)(1+ ε) 

 

L= {ε, 0, 1, 01} 

  

Set of strings of a’s and b’s of any length including the null 

3. REGULAR GRAMMARS  
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(a+b)* string.  So L= { ε, 0, 1,00,01,10,11,…….} 

 

(a+b)*abb 

 

 

 

Set of strings of a’s and b’s ending with the string abb, 

So L = {abb, aabb, babb, aaabb, ababb, …………..} 

 

(11)* 

 

 

Set consisting of even number of 1’s including empty string, 

So L= {ε, 11, 1111, 111111, ……….} 

 

(aa)*(bb)*b 

 

 

Set of strings consisting of even number of a’s followed by 

odd number of b’s ,  so L= {b, aab, aabbb, aabbbbb, aaaab, 

aaaabbb, …………..} 

 

 

(aa + ab + ba + 

bb)* 

 

 

String of a’s and b’s of even length can be obtained by  

concatenating any combination of the strings aa, ab, ba and 

bb  including null, so L= {aa, ab, ba, bb, aaab, aaba, 

…………..} 

 

 

Regular Sets  

Any set that represents the value of the Regular Expression is called a Regular 

Set. 

Properties of Regular Sets 

Property 1. The union of two regular set is regular. 

Proof: 

Let us take two regular expressions  

RE1 = a(aa)*  and   RE2 = (aa)*   

So,  L1= {a, aaa, aaaaa,.....}   (Strings of odd length excluding Null) 

and  L2={ ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null) 

L1 ∪ L2 = { ε,a,aa, aaa, aaaa, aaaaa, aaaaaa,.......}   

(Strings of all possible lengths including Null) 
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RE (L1 ∪ L2) = a*   (which is a regular expression itself) 

Hence, proved. 

 

Property 2. The intersection of two regular set is regular.  

Proof:  

Let us take two regular expressions  

RE1 = a(a*)   and   RE2 = (aa)*   

So,  L1 = { a,aa, aaa, aaaa, ....}  (Strings of all possible lengths excluding Null) 

L2 ={ ε, aa, aaaa, aaaaaa,.......}  (Strings of even length including Null) 

L1 ∩ L2 = { aa, aaaa, aaaaaa,.......}  (Strings of even length excluding Null) 

RE (L1 ∩ L2) = aa(aa)* which is a regular expression itself. 

Hence, proved. 

 

Property 3. The complement of a regular set is regular. 

Proof: 

Let us take a regular expression:  

RE = (aa)* 

So,  L = {ε, aa, aaaa, aaaaaa, .......} (Strings of even length including Null) 

Complement of L is all the strings that is not in L. 

So,  L’ = {a, aaa, aaaaa, .....}    (Strings of odd length excluding Null) 

RE (L’) = a(aa)* which is a regular expression itself. 

Hence, proved. 

 

Property 4. The difference of two regular set is regular. 

Proof: 

Let us take two regular expressions:  

RE1 = a (a*)  and   RE2 = (aa)*   

So,  L1= {a,aa, aaa, aaaa, ....} (Strings of all possible lengths excluding Null) 
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L2 = { ε, aa, aaaa, aaaaaa,.......} (Strings of even length including Null) 

 

L1 – L2  = {a, aaa, aaaaa, aaaaaaa, ....}  

(Strings of all odd lengths excluding Null) 

 

RE (L1 – L2) = a (aa)* which is a regular expression. 

Hence, proved. 

 

Property 5. The reversal of a regular set is regular. 

Proof: 

We have to prove LR is also regular if L is a regular set. 

Let,  L= {01, 10, 11, 10}  

RE (L)= 01 + 10 + 11 + 10 

LR= {10, 01, 11, 01} 

RE (LR)= 01+ 10+ 11+10 which is regular 

Hence, proved. 

 

Property 6. The closure of a regular set is regular. 

Proof: 

If L = {a, aaa, aaaaa, .......} (Strings of odd length excluding Null) 

i.e.,  RE (L) = a (aa)* 

L*= {a, aa, aaa, aaaa , aaaaa,……………} (Strings of all lengths excluding Null) 

RE (L*) = a (a)* 

Hence, proved. 

 

Property 7. The concatenation of two regular sets is regular. 

Proof: 

Let  RE1 = (0+1)*0 and RE2 = 01(0+1)*   

Here,  L1 = {0, 00, 10, 000, 010, ......}  (Set of strings ending in 0) 
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and  L2 = {01, 010,011,.....}   (Set of strings beginning with 01) 

Then,   L1 L2 = {001,0010,0011,0001,00010,00011,1001,10010,.............}  

Set of strings containing 001 as a substring which can be represented by an RE: 

(0+1)*001(0+1)* 

Hence, proved. 

Identities Related to Regular Expressions 

Given R, P, L, Q as regular expressions, the following identities hold: 

1. Ø* = ε 

2. ε* = ε 

3. R+ = RR* = R*R 

4. R*R* = R* 

5. (R*)* = R* 

6. RR* = R*R 

7. (PQ)*P =P(QP)* 

8. (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)* 

9. R + Ø = Ø + R = R  (The identity for union) 

10. Rε = εR = R   (The identity for concatenation) 

11. ØL = LØ = Ø   (The annihilator for concatenation) 

12. R + R = R    (Idempotent law) 

13. L (M + N) = LM + LN  (Left distributive law) 

14. (M + N) L = LM + LN  (Right distributive law) 

15. ε + RR* = ε + R*R = R* 

Arden’s Theorem 

In order to find out a regular expression of a Finite Automaton, we use Arden’s 

Theorem along with the properties of regular expressions. 
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Statement: 

Let P and Q be two regular expressions.  

If P does not contain null string, then R = Q + RP has a unique solution 

that is R = QP* 

Proof: 

 R = Q + (Q + RP)P  [After putting the value R = Q + RP] 

   = Q + QP + RPP     

 

When we put the value of R recursively again and again, we get the following 

equation: 

 

R = Q + QP + QP2 + QP3….. 

R = Q (є + P + P2 + P3 + …. ) 

R = QP*      [As P* represents (є + P + P2 + P3 + ….) ]  

Hence, proved. 

 

Assumptions for Applying Arden’s Theorem: 

1. The transition diagram must not have NULL transitions 

2. It must have only one initial state 

Method  

Step 1:  Create equations as the following form for all the states of the DFA 

having n states with initial state q1. 

q1 = q1R11 + q2R21 + … + qnRn1 + є  

q2 = q1R12 + q2R22 + … + qnRn2 

..………………………… 

…………………………… 

…………………………… 

…………………………… 

qn = q1R1n + q2R2n + … + qnRnn 

 

Rij represents the set of labels of edges from qi to qj, if no such edge exists, then 

Rij = Ø 

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQ0gIoADAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2F%25C3%2598_%2528disambiguation%2529&ei=I-sKVcriCIyJuATAooHIDg&usg=AFQjCNGI_swol2c4d5nC1BFrV0v3KV6PCw&bvm=bv.88528373,d.c2E
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Step 2: Solve these equations to get the equation for the final state in 

terms of Rij 

Problem 

Construct a regular expression corresponding to the automata given below: 

 
Finite automata 

Solution 

Here the initial state is q2 and the final state is q1. 

The equations for the three states q1, q2, and q3 are as follows: 

q1 = q1a + q3a + є   (є move is because q1 is the initial state0 

q2 = q1b + q2b + q3b 

q3 = q2a 

Now, we will solve these three equations: 

 

q2 = q1b + q2b + q3b 

         = q1b + q2b + (q2a)b  (Substituting value of q3) 

    = q1b + q2(b + ab) 

 

    = q1b (b + ab)*  (Applying Arden’s Theorem) 

 

q1 = q1a + q3a + є 

= q1a + q2aa + є      (Substituting value of q3) 

    = q1a + q1b(b + ab*)aa + є  (Substituting value of q2) 

    = q1(a + b(b + ab)*aa) + є 

  q3 

q1 

b 

a 

a 

q2 

b 

b a 
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    = є (a+ b(b + ab)*aa)* 

    = (a + b(b + ab)*aa)* 

Hence, the regular expression is  (a + b(b + ab)*aa)*. 

Problem 

Construct a regular expression corresponding to the automata given below: 

 
Finite automata 

Solution: 

Here the initial state is q1 and the final state is q2 

Now we write down the equations: 

q1 = q10 + є 

q2 = q11 + q20 

q3 = q21 + q30 + q31 

Now, we will solve these three equations: 

q1 = є0*  [As, εR = R] 

So,  q1 = 0*  

 

q2 = 0*1 + q20 

So,  q2 = 0*1(0)* [By Arden’s theorem] 

 

Hence, the regular expression is   0*10*. 

  q3 

q2 

  0 

0 

1 

q1 

1 

0, 1 
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Construction of an FA from an RE 

We can use Thompson's Construction to find out a Finite Automaton from a 

Regular Expression. We will reduce the regular expression into smallest regular 

expressions and converting these to NFA and finally to DFA. 

 
Some basic RA expressions are the following:  

 
Case 1: For a regular expression ‘a’, we can construct the following FA: 

 

 
       Finite automata for RE = a 

 
Case 2: For a regular expression ‘ab’, we can construct the following FA: 

 

 
      Finite automata for RE = ab 

 
Case 3: For a regular expression (a+b), we can construct the following FA: 

 
Finite automata for RE= (a+b) 

 
Case 4: For a regular expression (a+b)*, we can construct the following FA: 

qf 
a 

q1 

b 

qf 
a 

q1 
b 

q1 

qf 
a 

q1 
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Finite automata for RE= (a+b)* 

 

Method: 

Step 1  Construct an NFA with Null moves from the given regular expression. 

Step 2  Remove Null transition from the NFA and convert it into its equivalent 

DFA. 

Problem  

Convert the following RA into its equivalent DFA:  1 (0 + 1)* 0 

Solution: 

We will concatenate three expressions "1", "(0 + 1)*" and "0" 

 
NDFA with NULL transition for RA:  1 (0 + 1)* 0 

 
Now we will remove the є transitions. After we remove the є transitions from the 

NDFA, we get the following:  

 
NDFA without NULL transition for RA:  1 (0 + 1)* 0 

It is an NDFA corresponding to the RE:  1 (0 + 1)* 0. If you want to convert it 

into a DFA, simply apply the method of converting NDFA to DFA discussed in 

Chapter 1. 

1 
q0 q2 

0, 1 

qf 
0 

1 
q0 

є 
q1 

є 

 

q2 q3 

0, 1 

qf 
0 

qf

2 

a,b  
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Finite Automata with Null Moves (NFA-ε)   

A Finite Automaton with null moves (FA-ε) does transit not only after giving 

input from the alphabet set but also without any input symbol. This transition 

without input is called a null move. 

An NFA-ε is represented formally by a 5-tuple (Q, Σ, δ, q0, F), consisting of 

 Q : a finite set of states  

 Σ : a finite set of input symbols  

 δ : a transition function δ : Q × (Σ ∪ {ε}) → 2Q 

 q0 : an initial state q0 ∈ Q 

 F: a set of final state/states of Q (F⊆Q). 

 
Finite automata with Null Moves 

The above (FA-ε) accepts a string set: {0, 1, 01} 

Removal of Null Moves from Finite Automata 

If in an NDFA, there is  ϵ-move between vertex X to vertex Y, we can remove it 

using the following steps: 

1. Find all the outgoing edges from Y. 

2. Copy all these edges starting from X without changing the edge labels. 

3. If X is an initial state, make Y also an initial state. 

4. If Y is a final state, make X also a final state. 

Problem 

Convert the following NFA-ε to NFA without Null move. 

  a b  c 

0 

 
 

ε ε 

1 

http://en.wikipedia.org/wiki/N-tuple
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Input_symbol
http://en.wikipedia.org/wiki/Function_%28mathematics%29
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Finite automata with Null Moves 

Solution 

Step 1:  

Here the ε transition is between q1 and q2, so let q1 is X and qf is Y. 

Here the outgoing edges from qf is to qf for inputs 0 and 1. 

 

Step 2:  

Now we will Copy all these edges from q1 without changing the edges from 

qf and get the following FA: 

 

NDFA after step 2 

Step 3:  

Here q1 is an initial state, so we make qf also an initial state. 

So the FA becomes - 

q2 

q1  qf 

0, 1 

 

0 

1 

0 
1 

0, 1 

q2 

q1  
ε 

0 

1 

0 
1 

0, 1 qf 
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NDFA after Step 3 

 

Step 4:  

Here qf is a final state, so we make q1 also a final state. 

So the FA becomes - 

 
Final NDFA without NULL moves 

Pumping Lemma for Regular Languages 

Theorem  

Let L be a regular language. Then there exists a constant ‘c’ such that for 

every string w in L:  

|w| ≥ c  

We can break w into three strings, w = xyz, such that:  

1. |y| > 0  

2. |xy| ≤ c  

3. For all k ≥ 0, the string xykz is also in L. 

q2 

 qf 

0, 1 

 

0 

1 

0 
1 

0, 1  q1 

q2 

q1  qf 

0, 1 

 

0 

1 

0 
1 

0, 1 
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Applications of Pumping Lemma 

Pumping Lemma is to be applied to show that certain languages are not regular. 

It should never be used to show a language is regular. 

1. If L is regular, it satisfies Pumping Lemma. 

2. If L is non-regular, it does not satisfy Pumping Lemma. 

Method to prove that a language L is not regular: 

1. At first, we have to assume that L is regular. 

2. So, the pumping lemma should hold for L. 

3. Use the pumping lemma to obtain a contradiction: 

(a) Select w such that |w| ≥ c  

(b) Select y such that |y| ≥ 1 

(c) Select x such that |xy| ≤ c  

(d) Assign the remaining string to z.  

(e) Select k such that the resulting string is not in L. 

Hence L is not regular.  

Problem 

Prove that L = {aibi | i ≥ 0} is not regular. 

Solution: 

1. At first, we assume that L is regular and n is the number of states. 

 

2. Let w = anbn. Thus |w| = 2n ≥ n. 

 

3. By pumping lemma, let w = xyz, where |xy|≤ n. 

 

4. Let x = ap, y = aq, and z = arbn, where p + q + r = n.p ≠ 0, q ≠ 0, r ≠ 0.  

Thus |y|≠ 0 

 

5. Let k = 2. Then xy2z = apa2qarbn.  

 

6. Number of as = (p + 2q + r) = (p + q + r) + q = n + q 

 

7. Hence, xy2z = an+q bn. Since q ≠ 0, xy2z is not of the form anbn. 

 

8. Thus, xy2z is not in L. Hence L is not regular. 
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Complement of a DFA 

If (Q, Σ, δ, q0, F) be a DFA that accepts a language L, then the complement of 

the DFA can be obtained by swapping its accepting states with its non-accepting 

states and vice versa. 

We will take an example and elaborate this below: 

 

DFA accepting language L 

This DFA accepts the language  

L = {a, aa, aaa , ............. }  

over the alphabet  

Σ = {a, b} 

So, RE = a+. 

Now we will swap its accepting states with its non-accepting states and vice 

versa and will get the following: 

 

DFA accepting complement of language L 

 

 

 

X 
b 

b 

  a, b 

a 

a 

  Z 

Y 

  Y 

Z 

b 

b 

  a, b 

a 

a 

X 
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This DFA accepts the language  

Ľ = {ε, b, ab ,bb,ba, ............... }  

over the alphabet  

Σ = {a, b} 

Note: If we want to complement an NFA, we have to first convert it to DFA and 

then have to swap states as in the previous method. 
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Context-Free Grammar 

Definition:  A context-free grammar (CFG) consisting of a finite set of grammar 

rules is a quadruple (N, T, P, S) where 

 N is a set of non-terminal symbols. 

 
 T is a set of terminals where N ∩ T = NULL. 

 

 P is a set of rules, P: N → (N U T)*, i.e., the left-hand side of the 

production rule P does have any right context or left context. 

 
 S is the start symbol. 

Example 

1. The grammar ({A}, {a, b, c}, P, A), P : A → aA, A → abc. 

2. The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S → ε 

3. The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F,   F → 00F | ε     

Generation of Derivation Tree 

A derivation tree or parse tree is an ordered rooted tree that graphically 

represents the semantic information a string derived from a context-free 

grammar. 

Representation Technique:  

1. Root vertex: Must be labeled by the start symbol. 

2. Vertex:  Labeled by a non-terminal symbol.  

3. Leaves:  Labeled by a terminal symbol or ε.  

If S → x1x2 …… xn is a production rule in a CFG, then the parse tree / derivation 

tree will be as follows: 

4. CONTEXT-FREE GRAMMARS 

http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
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There are two different approaches to draw a derivation tree: 

1. Top-down Approach:  

(a) Starts with the starting symbol S 

(b) Goes down to tree leaves using productions 

2. Bottom-up Approach: 

(a) Starts from tree leaves  

(b) Proceeds upward to the root which is the starting symbol S 

Derivation or Yield of a Tree 

The derivation or the yield of a parse tree is the final string obtained by 

concatenating the labels of the leaves of the tree from left to right, ignoring 

the Nulls. However, if all the leaves are Null, derivation is Null.  

Example 

Let a CFG {N,T,P,S} be  

        N = {S}, T = {a, b}, Starting symbol = S, P = S → SS | aSb | ε 

One derivation from the above CFG is “abaabb” 

S → SS → aSbS →abS → abaSb → abaaSbb → abaabb 

S 

x1 x2 xn 
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Sentential Form and Partial Derivation Tree 

A partial derivation tree is a sub-tree of a derivation tree/parse tree such that 

either all of its children are in the sub-tree or none of them are in the sub-tree. 

Example 

If in any CFG the productions are:  

S → AB,  A → aaA | ε,  B →Bb| ε  

the partial derivation tree can be the following: 

 
 

If a partial derivation tree contains the root S, it is called a sentential form. 

The above sub-tree is also in sentential form. 

S 

A 

 

B 

 

S 

S 

 

SS 

 

a S b a S b 

a S b ε 

ε 
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Leftmost and Rightmost Derivation of a String 

 Leftmost derivation - A leftmost derivation is obtained by applying 

production to the leftmost variable in each step. 

 Rightmost derivation - A rightmost derivation is obtained by applying 

production to the rightmost variable in each step. 

Example 

Let any set of production rules in a CFG be  

X → X+X | X*X |X| a 

over an alphabet {a}.   

The leftmost derivation for the string "a+a*a" may be: 

X → X+X→ a+X→ a+ X*X →a+a*X→ a+a*a 

The stepwise derivation of the above string is shown as below: 
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The rightmost derivation for the above string "a+a*a" may be: 

X → X*X→ X*a → X+X*a →X+a*a→ a+a*a 

 

 

 

 

 

 

 

X 

X + X 

Step 1: 

X 

X + X 

Step 2: 

a 

X 

X + X 

Step 3: 

a 
X * X 

X 

X + X 

Step 4: 

a 
X * X 

a X 

X + X 

Step 5: 

a 
X * X 

a a 
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The stepwise derivation of the above string is shown as below: 

 

Ambiguity in Context-Free Grammars 

If a context free grammar G has more than one derivation tree for some string 

w ∈ L(G), it is called an ambiguous grammar. There exist multiple right-most 

or left-most derivations for some string generated from that grammar. 

Problem 

Check whether the grammar G with production rules:  

X → X+X | X*X |X| a  

X 

X * X 

Step 1: 

X 

X * X 

Step 2: 

a 

Step 3: X 

X * X 

a 
X + X 

a 

Step 4: X 

X * X 

a 
X + X 

a Step 5: X 

X * X 

a 
X + X 

a 
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is ambiguous or not. 

Solution 

Let’s find out the derivation tree for the string "a+a*a". It has two leftmost 

derivations. 

Derivation 1:  X → X+X→ a +X→ a+ X*X →a+a*X→ a+a*a 

Parse tree 1: 

               
         
    
Derivation 2: X → X*X→X+X*X→ a+ X*X →a+a*X→ a+a*a 

Parse tree 2: 

 
 
Since there are two parse trees for a single string "a+a*a", the grammar G is 

ambiguous. 

a 

X 

X * X 

a 
X + X 

a 

X 

X + X 

a 
X * X 

a a 
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Closure Property of CFL 

Context-free languages are closed under: 

 Union  

 Concatenation 

 Kleene Star operation 

Union 

Let L1 and L2 be two context free languages. Then L1  L2 is also context free. 

Example: 

Let L1 = { anbn , n>0}. Corresponding grammar G1 will have P: S1  aAb|ab 

Let L2 = { cmdm , n≥0}. Corresponding grammar G2 will have P: S2  cBb| ε 

Union of L1 and L2, L = L1  L2 = { anbn }  { cmdm } 

The corresponding grammar G will have the additional production S  S1 | S2 

Concatenation 

If L1 and L2 are context free languages, then L1L2 is also context free. 

Example: 

Union of the languages L1 and L2, L = L1L2 = { anbncmdm }  

The corresponding grammar G will have the additional production S  S1 S2 

Kleene Star 

If L is a context free language, then L* is also context free. 

Example: 

Let L = { anbn , n≥0}. Corresponding grammar G will have P: S  aAb| ε 

Kleene Star L1 = { anbn }* 

The corresponding grammar G1 will have additional productions S1  SS1 | ε 
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Context-free languages are not closed under: 

 Intersection : If L1 and L2 are context free languages, then L1  L2 is 

not necessarily context free. 
 

 Intersection with Regular Language : If L1 is a regular language and 

L2 is a context free language, then L1  L2 is a context free language. 
 

 Complement : If L1 is a context free language, then L1’ may not be 

context free. 

Simplification of CFGs 

In a CFG, it may happen that all the production rules and symbols are not 

needed for the derivation of strings. Besides, there may be some null 

productions and unit productions. Elimination of these productions and symbols 

is called simplification of CFGs. Simplification essentially comprises of the 

following steps: 

 Reduction of CFG 

 Removal of Unit Productions 

 Removal of Null Productions 

Reduction of CFG 

CFGs are reduced in two phases: 

Phase 1: Derivation of an equivalent grammar, G’, from the CFG, G, such that 

each variable derives some terminal string.  

Derivation Procedure:  

Step 1:  Include all symbols, W1, that derive some terminal and 

initialize i=1. 

Step 2:  Include all symbols, Wi+1, that derive Wi.  

Step 3:  Increment i and repeat Step 2, until Wi+1 = Wi. 

Step 4:  Include all production rules that have Wi in it. 

 

 
Phase 2: Derivation of an equivalent grammar, G”, from the CFG, G’, such that 

each symbol appears in a sentential form. 

Derivation Procedure: 

Step 1: Include the start symbol in Y1 and initialize i = 1. 
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Step 2:  Include all symbols, Yi+1, that can be derived from Yi and 

include all production rules that have been applied. 

Step 3: Increment i and repeat Step 2, until Yi+1 = Yi. 

Problem 

Find a reduced grammar equivalent to the grammar G, having production rules, 

P: S  AC | B, A  a, C  c | BC, E  aA | e 

Solution 

Phase 1: 

T   = { a, c, e } 

W1 = { A, C, E } from rules A  a, C  c and E  aA 

W2 = { A, C, E } U { S } from rule S  AC 

W3 = { A, C, E, S } U   

 

Since W2 = W3, we can derive G’ as: 

G’ = { { A, C, E, S }, { a, c, e }, P, {S}} 

where P: S  AC, A  a, C  c , E  aA | e 

 

Phase 2: 

Y1 = { S } 

Y2 = { S, A, C } from rule S  AC 

Y3 = { S, A, C, a, c } from rules A  a and C  c 

Y4 = { S, A, C, a, c } 

Since Y3 = Y4, we can derive G” as: 

G” = { { A, C, S }, { a, c }, P, {S}} 

where P: S  AC, A  a, C  c  

Removal of Unit productions  

Any production rule in the form A → B where A, B ∈ Non-terminal is called unit 

production. 
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Removal Procedure: 

Step 1: To remove A→B, add production A→x to the grammar rule whenever 

B→x occurs in the grammar. [x ∈ Terminal, x can be Null] 

Step 2: Delete A→B from the grammar. 

Step 3: Repeat from step 1 until all unit productions are removed. 

Problem 

Remove unit production from the following: 

S → XY, X → a, Y → Z | b, Z → M, M → N, N → a 

 

Solution: 

There are 3 unit productions in the grammar: 

Y → Z,  Z → M,  and  M → N 

 

At first, we will remove M → N.   

As N → a, we add M → a, and M → N is removed. 

The production set becomes  

S → XY, X → a, Y → Z | b, Z → M, M → a, N → a 

 

Now we will remove Z → M.  

As M → a, we add Z→ a, and Z → M is removed. 

The production set becomes  

S → XY, X → a, Y → Z | b, Z → a, M → a, N → a 

 

Now we will remove Y → Z.   

As Z → a, we add Y→ a, and Y → Z is removed. 

The production set becomes 

S → XY, X → a, Y → a | b, Z → a, M → a, N → a 

Now Z, M, and N are unreachable, hence we can remove those. 

The final CFG is unit production free:  
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S → XY,  X → a,  Y → a | b 

Removal of Null Productions 

In a CFG, a non-terminal symbol ‘A’ is a nullable variable if there is a production 

A → ϵ or there is a derivation that starts at A and finally ends up with  

ϵ:    A → .......… → ϵ 

Removal Procedure: 

Step1  Find out nullable non-terminal variables which derive ϵ. 

Step2  For each production A → a, construct all productions A → x where x is 

obtained from ‘a’ by removing one or multiple non-terminals from Step 

1. 

Step3  Combine the original productions with the result of step 2 and remove 

ϵ-productions. 

Problem 

Remove null production from the following: 

S→ASA | aB | b, A → B, B → b | ϵ 

 

Solution: 

There are two nullable variables: A and B 

 

At first, we will remove B → ϵ. 

After removing B → ϵ, the production set becomes: 

S→ASA | aB | b | a,  A → B| b | ϵ,  B → b  

 

Now we will remove A → ϵ. 

After removing A → ϵ, the production set becomes: 

S→ASA | aB | b | a | SA | AS | S,  A → B| b,  B → b  

This is the final production set without null transition. 
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Chomsky Normal Form 

A CFG is in Chomsky Normal Form if the Productions are in the following forms: 

 A → a  

 A → BC 

 S → ϵ  

where A, B, and C are non-terminals and a is terminal. 

Algorithm to Convert into Chomsky Normal Form: 

Step 1  If the start symbol S occurs on some right side, create a new start 

symbol S’ and a new production S’ → S. 

Step 2  Remove Null productions. (Using the Null production removal algorithm 

discussed earlier) 

Step 3  Remove unit productions. (Using the Unit production removal 

algorithm discussed earlier) 

Step 4  Replace each production A → B1…Bn where n > 2 with A → B1C where 

C → B2 …Bn. Repeat this step for all productions having two or more 

symbols in the right side. 

Step 5  If the right side of any production is in the form A→ aB where a is a 

terminal and A, B are non-terminal, then the production is replaced by 

A→ XB and X→ a. Repeat this step for every production which is in the 

form A→ aB. 

Problem: 

Convert the following CFG into CNF 

S→ ASA | aB,  A → B | S,  B → b | ϵ  

 

Solution: 

(1) Since S appears in R.H.S, we add a new state S0 and S0→S is added to the 

production set and it becomes: 

 S0→S,  S→ ASA | aB,  A → B | S,   B → b | ϵ  

 

(2) Now we will remove the null productions: 

B → ϵ   and   A → ϵ 
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After removing B → ϵ, the production set becomes: 

  S0→S,  S→ ASA | aB | a, A → B | S | ϵ, B → b 

After removing A → ϵ, the production set becomes: 

  S0→S, S→ ASA | aB | a | AS | SA | S, A → B | S, B → b 

 

(3) Now we will remove the unit productions. 

After removing S→ S, the production set becomes: 

  S0→S, S→ ASA | aB | a | AS | SA, A → B | S, B → b 

After removing S0→ S, the production set becomes: 

  S0→ ASA | aB | a | AS | SA,  S→ ASA | aB | a | AS | SA 

  A → B | S,  B → b 

After removing A→ B, the production set becomes: 

S0 → ASA | aB | a | AS | SA,  S→ ASA | aB | a | AS | SA 

A → S | b 

B → b 

After removing A→ S, the production set becomes: 

 S0 → ASA | aB | a | AS | SA,  S→ ASA | aB | a | AS | SA 

 A → b |ASA | aB | a | AS | SA, B → b 

 

 

(4) Now we will find out more than two variables in the R.H.S  

Here, S0→ ASA, S → ASA, A→ ASA violates two Non-terminals in R.H.S. 

Hence we will apply step 4 and step 5 to get the following final production set 

which is in CNF: 

 S0→ AX | aB | a | AS | SA 

 S→ AX | aB | a | AS | SA 

 A → b |AX | aB | a | AS | SA 

 B → b 

 X→ SA 
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(5) We have to change the productions S0→ aB, S→ aB, A→ aB 

And the final production set becomes: 

 S0→ AX | YB | a | AS | SA 

 S→ AX | YB | a | AS | SA 

 A → b |AX | YB | a | AS | SA 

 B → b 

 X→ SA 

 Y → a 

Greibach Normal Form 

A CFG is in Greibach Normal Form if the Productions are in the following forms: 

A → b  

A → bD1…Dn 

S → ϵ  

where A, D1,....,Dn are non-terminals and b is a terminal. 

Algorithm to Convert a CFG into Greibach Normal Form: 

Step 1  If the start symbol S occurs on some right side, create a new start 

symbol S’ and a new production S’ → S. 

Step 2  Remove Null productions. (Using the Null production removal 

algorithm discussed earlier) 

Step 3  Remove unit productions. (Using the Unit production removal 

algorithm discussed earlier) 

Step 4  Remove all direct and indirect left-recursion. 

Step 5  Do proper substitutions of productions to convert it into the proper 

form of GNF. 

Problem: 

Convert the following CFG into CNF 

S→ XY | Xn | p 

X → mX | m 

Y → Xn | o  
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Solution: 

Here, S does not appear on the right side of any production and there are no 

unit or null productions in the production rule set. So, we can skip Step 1 to 

Step 3. 

 

Step 4: 

Now after replacing  

X in S → XY | Xo | p  

with  

mX | m  

we obtain  

S → mXY | mY | mXo | mo | p. 

And after replacing  

X in Y→ Xn | o  

with the right side of  

X → mX | m  

we obtain  

Y→ mXn | mn | o. 

Two new productions O→ o and P → p are added to the production set and then 

we came to the final GNF as the following: 

S → mXY | mY | mXC | mC | p 

X→ mX | m 

Y→ mXD | mD | o 

O → o 

P → p 

Left and Right Recursive Grammars 

In a context-free grammar G, if there is a production in the form X→ Xa where 

X is a non-terminal and ‘a’ is a string of terminals, it is called a left recursive 

production. The grammar having a left recursive production is called a left 

recursive grammar. 
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And if in a context-free grammar G, if there is a production is in the form X→ aX 

where X is a non-terminal and ‘a’ is a string of terminals, it is called a right 

recursive production. The grammar having a right recursive production is 

called a right recursive grammar. 

Pumping Lemma for Context-Free Grammars 

Lemma: 

If L is a context-free language, there is a pumping length p such that 

any string w ∈ L of length ≥ p can be written as w = uvxyz, where 

vy ≠ ε, |vxy| ≤ p, and for all i ≥ 0, uvixyiz ∈ L. 

Applications of Pumping Lemma 

Pumping lemma is used to check whether a grammar is context free or not. Let 

us take an example and show how it is checked. 

Problem: 

Find out whether the language L= {xnynzn | n ≥1} is context free or not. 

 

Solution: 

Let L is context free. Then, L must satisfy pumping lemma. 

At first, choose a number n of the pumping lemma. Then, take z as 0n1n2n.  

Break z into uvwxy, where  

|vwx| ≤ n  and  vx ≠ ε. 

 

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at 

least (n+1) positions apart. There are two cases: 

Case 1: vwx has no 2s. Then vx has only 0s and 1s. Then uwy, which would 

have to be in L, has n 2s, but fewer than n 0s or 1s. 

Case 2: vwx has no 0s. 

Here contradiction occurs. 

Hence, L is not a context-free language. 
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Basic Structure of PDA 

A pushdown automaton is a way to implement a context-free grammar in a 

similar way we design DFA for a regular grammar. A DFA can remember a finite 

amount of information, but a PDA can remember an infinite amount of 

information. 

Basically a pushdown automaton is:   

"Finite state machine" + "a stack"  

A pushdown automaton has three components:  

 an input tape, 

 a control unit, and  

 a stack with infinite size.  

The stack head scans the top symbol of the stack.  

A stack does two operations: 

 Push: a new symbol is added at the top. 

 Pop: the top symbol is read and removed. 

A PDA may or may not read an input symbol, but it has to read the top of the 

stack in every transition. 

 
 

5. PUSHDOWN AUTOMATA 

 

Finite control 

unit 

Input tape 

Accept or 

reject 

Stack 

Takes 

input 

Push or Pop 
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A PDA can be formally described as a 7-tuple (Q, Σ, S, δ, q0, I, F): 

 Q is the finite number of states 

 Σ is input alphabet 

 S is stack symbols 

 δ is the transition function: Q × (Σ∪{ε}) × S × Q × S*  

 q0 is the initial state (q0 ∈ Q) 

 I is the initial stack top symbol (I ∈ S) 

 F is a set of accepting states (F ∈ Q) 

The following diagram shows a transition in a PDA from a state q1 to state q2, 

labeled as a,b → c : 

 

This means at state q1, if we encounter an input string ‘a’ and top symbol of the 

stack is ‘b’, then we pop ‘b’, push ‘c’ on top of the stack and move to state q2. 

Terminologies Related to PDA 

Instantaneous Description  

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s) 

where 

 q is the state 

 w is unconsumed input 

 s is the stack contents 

q1 q2 
a,b→c 

Input 

Symbol 

Stack top 

Symbol 

Push 

Symbol 
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Turnstile Notation 

The "turnstile" notation is used for connecting pairs of ID's that represent one or 

many moves of a PDA. The process of transition is denoted by the turnstile 

symbol "⊢". 

Consider a PDA (Q, Σ, S, δ, q0, I, F). A transition can be mathematically 

represented by the following turnstile notation: 

(p, aw, Tβ) ⊢ (q, w, αb) 

This implies that while taking a transition from state p to state q, the input 

symbol ‘a’ is consumed, and the top of the stack ‘T’ is replaced by a new string 

‘α’. 

Note: If we want zero or more moves of a PDA, we have to use the symbol (⊢*) 

for it. 

Acceptance by PDA 

There are two different ways to define PDA acceptability. 

Final State Acceptability 

In final state acceptability, a PDA accepts a string when, after reading the entire 

string, the PDA is in a final state. From the starting state, we can make moves 

that end up in a final state with any stack values. The stack values are irrelevant 

as long as we end up in a final state. 

For a PDA (Q, Σ, S, δ, q0, I, F), the language accepted by the set of final states F 

is:  

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, x), q ∈ F}  

for any input stack string x.  

Empty Stack Acceptability 

Here a PDA accepts a string when, after reading the entire string, the PDA has 

emptied its stack. 

For a PDA (Q, Σ, S, δ, q0, I, F), the language accepted by the empty stack is:  

L(PDA) = {w | (q0, w, I) ⊢* (q, ε, ε), q ∈ Q}    
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Example   

Construct a PDA that accepts L= {0n 1n | n ≥ 0} 

Solution 

 

PDA for L= {0n 1n | n≥0} 

This language accepts L = {ε, 01, 0011, 000111, ............................. } 

Here, in this example, the number of ‘a’ and ‘b’ have to be same. 

 Initially we put a special symbol ‘$’ into the empty stack.  

 

 Then at state q2, if we encounter input 0 and top is Null, we push 0 into 

stack. This may iterate. And if we encounter input 1 and top is 0, we pop 

this 0.  

 

 Then at state q3, if we encounter input 1 and top is 0, we pop this 0. This 

may also iterate. And if we encounter input 1 and top is 0, we pop the top 

element.  

 

 If the special symbol ‘$’ is encountered at top of the stack, it is popped 

out and it finally goes to the accepting state q4. 

Example  

Construct a PDA that accepts L= { wwR | w = (a+b)* } 

Solution 

 

PDA for L= {wwR | w = (a+b)*} 

Initially we put a special symbol ‘$’ into the empty stack. At state q2, the w is 

being read. In state q3, each 0 or 1 is popped when it matches the input. If any 

b, ε →b 

q4 
ε, $→ ε 

q2 q3 
ε, ε → ε 

b, b→ ε 

a, ε →a a,a → ε 

ε , ε→$ 

 
q1 

q1 
ε , ε→$ 

 

0, ε →0 

q4 
ε, $→ ε 

q2 q3 
1, 0→ ε 

1, 0→ ε 
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other input is given, the PDA will go to a dead state. When we reach that special 

symbol ‘$’, we go to the accepting state q4. 

Correspondence between PDA and CFL 

If a grammar G is context-free, we can build an equivalent nondeterministic PDA 

which accepts the language that is produced by the context-free grammar G. A 

parser can be built for the grammar G. 

Also, if P is a pushdown automaton, an equivalent context-free grammar G can 

be constructed where  

L(G) = L(P)  

In the next two topics, we will discuss how to convert from PDA to CFG and vice 

versa. 

Algorithm to find PDA corresponding to a given CFG 

Input:  A CFG, G= (V, T, P, S) 

Output:  Equivalent PDA, P= (Q, Σ, S, δ, q0, I, F) 

Step 1 Convert the productions of the CFG into GNF. 

Step 2 The PDA will have only one state {q}. 

Step 3 The start symbol of CFG will be the start symbol in the PDA. 

Step 4 All non-terminals of the CFG will be the stack symbols of the PDA 

and all the terminals of the CFG will be the input symbols of the 

PDA. 

Step 5 For each production in the form A→ aX where a is terminal and A, 

X are combination of terminal and non-terminals, make a transition 

δ (q, a, A). 

Problem 

Construct a PDA from the following CFG. 

G = ({S, X}, {a, b}, P, S)  

where the productions are:   

S → XS |  ,  A → aXb | Ab | ab 
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Solution 

Let the equivalent PDA,  

P = ({q}, {a, b}, {a, b, X, S}, δ, q, S) 

where δ: 

δ (q,  , S) = {(q, XS), (q,  )} 

 

δ(q,  , X) = {(q, aXb), (q, Xb), (q, ab)} 

δ(q, a, a) = {(q,  )} 

δ(q, 1, 1) = {(q,  )} 

Algorithm to find CFG corresponding to a given PDA 

Input:  A CFG, G= (V, T, P, S) 

Output:  Equivalent PDA, P = (Q, Σ, S, δ, q0, I, F) such that the non- 

terminals of the grammar G will be {Xwx | w,x ∈ Q} and the start 

state will be Aq0,F. 

Step 1 For every w, x, y, z ∈ Q, m ∈ S and a, b ∈ Σ, if δ (w, a, ) contains 

(y, m) and (z, b, m) contains (x, ), add the production rule Xwx → a 

Xyzb in grammar G. 

Step 2 For every w, x, y, z ∈ Q, add the production rule Xwx → XwyXyx in 

grammar G. 

Step 3 For w ∈ Q, add the production rule Xww→   in grammar G. 

Parsing and PDA 

Parsing is used to derive a string using the production rules of a grammar. It is 

used to check the acceptability of a string. Compiler is used to check whether or 

not a string is syntactically correct. A parser takes the inputs and builds a parse 

tree. 

A parser can be of two types:   

 Top-Down Parser: Top-down parsing starts from the top with the start-

symbol and derives a string using a parse tree. 

 

 Bottom-Up Parser: Bottom-up parsing starts from the bottom with the 

string and comes to the start symbol using a parse tree. 

http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Parse_tree
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Design of Top-Down Parser 

For top-down parsing, a PDA has the following four types of transitions:  

 Pop the non-terminal on the left hand side of the production at the top of 

the stack and push its right-hand side string. 

 

 If the top symbol of the stack matches with the input symbol being read, 

pop it. 

 

 Push the start symbol ‘S’ into the stack. 

 

 If the input string is fully read and the stack is empty, go to the final state 

‘F’. 

Example 

Design a top-down parser for the expression "x+y*z" for the grammar G with 

the following production rules:  

P:  S → S+X | X,  X → X*Y | Y,  Y → (S) | id 

 

Solution 

If the PDA is (Q, Σ, S, δ, q0, I, F), then the top-down parsing is: 

(x+y*z, I) ⊢(x +y*z, SI) ⊢ (x+y*z, S+XI) ⊢(x+y*z, X+XI)  

⊢(x+y*z, Y+X I) ⊢(x+y*z, x+XI) ⊢(+y*z, +XI) ⊢ (y*z, XI)  

⊢(y*z, X*YI) ⊢(y*z, y*YI) ⊢(*z,*YI) ⊢(z, YI) ⊢(z, zI) ⊢(ε, I) 

Design of a Bottom-Up Parser 

For bottom-up parsing, a PDA has the following four types of transitions:  

 Push the current input symbol into the stack.  

 

 Replace the right-hand side of a production at the top of the stack with its 

left-hand side. 

 

 If the top of the stack element matches with the current input symbol, 

pop it. 

 

 If the input string is fully read and only if the start symbol ‘S’ remains in 

the stack, pop it  and go to the final state ‘F’. 
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Example 

Design a top-down parser for the expression "x+y*z" for the grammar G with 

the following production rules:  

P:  S → S+X | X,  X → X*Y | Y,  Y → (S) | id 

 

Solution 

If the PDA is (Q, Σ, S, δ, q0, I, F), then the bottom-up parsing is: 

(x+y*z, I) ⊢ (+y*z, xI) ⊢ (+y*z, YI) ⊢ (+y*z, XI) ⊢ (+y*z, SI)  

⊢ (y*z, +SI) ⊢ (*z, y+SI) ⊢ (*z, Y+SI) ⊢ (*z, X+SI) ⊢ (z, *X+SI)  

⊢ (ε, z*X+SI) ⊢ (ε, Y*X+SI) ⊢ (ε, X+SI) ⊢ (ε, SI) 
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A Turing Machine is an accepting device which accepts the languages 

(recursively enumerable set) generated by type 0 grammars. It was invented in 

1936 by Alan Turing. 

Definition 

A Turing Machine (TM) is a mathematical model which consists of an infinite 

length tape divided into cells on which input is given. It consists of a head which 

reads the input tape. A state register stores the state of the Turing machine. 

After reading an input symbol, it is replaced with another symbol, its internal 

state is changed, and it moves from one cell to the right or left. If the TM 

reaches the final state, the input string is accepted, otherwise rejected. 

A TM can be formally described as a 7-tuple (Q, X, Σ, δ, q0, B, F) where: 

 Q is a finite set of states 

 X is the tape alphabet 

 Σ is the input alphabet 

 δ is a transition function;  δ : Q × X → Q × X × {Left_shift, Right_shift}. 

 q0 is the initial state 

 B is the blank symbol 

 F is the set of final states 

Comparison with the previous automaton: 

The following table shows a comparison of how a Turing machine differs from 

Finite Automaton and Pushdown Automaton. 

Machine Stack Data Structure Deterministic? 

Finite Automaton N.A Yes 

Pushdown Automaton Last In First Out(LIFO) No 

Turing Machine Infinite tape Yes 

 

 

 

 

6. TURING MACHINE 
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Example of Turing machine: 

Turing machine M = (Q, X, Σ, δ, q0, B, F) with 

 Q = {q0, q1, q2, qf} 

 X = {a, b} 

 Σ = {1} 

 q0= {q0} 

 B = blank symbol 

 F = {qf } 

 δ is given by: 

Tape alphabet 

symbol 

Present State 

‘q0’ 

Present State 

‘q1’ 

Present State 

‘q2’ 

a 1Rq1 1Lq0 1Lqf 

b 1Lq2 1Rq1 1Rqf 

 

Here the transition 1Rq1 implies that the write symbol is 1, the tape moves right, 

and the next state is q1. Similarly, the transition 1Lq2 implies that the write 

symbol is 1, the tape moves left, and the next state is q2. 

Accepted Language and Decided Language  

A TM accepts a language if it enters into a final state for any input string w. A 

language is recursively enumerable (generated by Type-0 grammar) if it is 

accepted by a Turing machine.  

A TM decides a language if it accepts it and enters into a rejecting state for any 

input not in the language. A language is recursive if it is decided by a Turing 

machine. 

There may be some cases where a TM does not stop. Such TM accepts the 

language, but it does not decide it. 

Designing a Turing Machine 

The basic guidelines of designing a Turing machine have been explained below 

with the help of a couple of examples. 
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Example 1 

Design a TM to recognize all strings consisting of an odd number of α’s. 

Solution 

The Turing machine M can be constructed by the following moves: 

 Let q1 be the initial state.  

 

 If M is in q1; on scanning α, it enters the state q2 and writes B (blank). 

 

 If M is in q2; on scanning α, it enters the state q1 and writes B (blank). 

 

 From the above moves, we can see that M enters the state q1 if it scans 

an even number of α’s, and it enters the state q2 if it scans an odd 

number of α’s. Hence q2 is the only accepting state. 

Hence,  

M = {{q1, q2}, {1}, {1, B}, δ, q1, B, {q2}} 

where δ is given by: 

Tape alphabet 

symbol 
Present State ‘q1’ Present State ‘q2’ 

α BRq2 BRq1 

 

Example 2 

Design a Turing Machine that reads a string representing a binary number and 

erases all leading 0’s in the string. However, if the string comprises of only 0’s, it 

keeps one 0. 

Solution 

Let us assume that the input string is terminated by a blank symbol, B, at each 

end of the string. 

The Turing Machine, M, can be constructed by the following moves: 

 Let q0 be the initial state. 

 

 If M is in q0, on reading 0, it moves right, enters the state q1 and erases 

0. On reading 1, it enters the state q2 and moves right. 

 

 If M is in q1, on reading 0, it moves right and erases 0, i.e., it replaces 0’s 

by B’s. On reaching the leftmost 1, it enters q2 and moves right. If it 
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reaches B, i.e., the string comprises of only 0’s, it moves left and enters 

the state q3. 

 

 If M is in q2, on reading either 0 or 1, it moves right. On reaching B, it 

moves left and enters the state q4. This validates that the string 

comprises only of 0’s and 1’s. 

 

 If M is in q3, it replaces B by 0, moves left and reaches the final state qf. 

 

 If M is in q4, on reading either 0 or 1, it moves left. On reaching the 

beginning of the string, i.e., when it reads B, it reaches the final state qf.  

Hence,  

M = {{q0, q1, q2, q3, q4, qf}, {0,1, B}, {1, B}, δ, q0, B, {qf}} 

where δ is given by: 

Tape 

alphabet 

symbol 

Present 

State ‘q0’ 

Present 

State ‘q1’ 

Present 

State ‘q2’ 

Present 

State ‘q3’ 

Present 

State ‘q4’ 

0 BRq1 BRq1 0Rq2 - 0Lq4 

1 1Rq2 1Rq2 1Rq2 - 1Lq4 

B BRq1 BLq3 BLq4 0Lqf BRqf 

Multi-tape Turing Machine 

Multi-tape Turing Machines have multiple tapes where each tape is accessed with 

a separate head. Each head can move independently of the other heads. Initially 

the input is on tape 1 and others are blank. At first, the first tape is occupied by 

the input and the other tapes are kept blank. Next, the machine reads 

consecutive symbols under its heads and the TM prints a symbol on each tape 

and moves its heads. 

 



Automata Theory 

 

71 

  

 

 
 

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, δ, 

q0, F) where: 

 Q is a finite set of states 

 

 X is the tape alphabet 

 

 B is the blank symbol 

 

 δ is a relation on states and symbols where  

 

δ: Q ×Xk →Q× (X× {Left_shift, Right_shift, No_shift })k  

 

where there is k number of tapes 

 

 q0 is the initial state 

 

 F is the set of final states 

 

Note: Every Multi-tape Turing machine has an equivalent single-tape Turing 

machine. 

Multi-track Turing Machine 

Multi-track Turing machines, a specific type of Multi-tape Turing machine, 

contain multiple tracks but just one tape head reads and writes on all tracks. 

Here, a single tape head reads n symbols from n tracks at one step. It accepts 

recursively enumerable languages like a normal single-track single-tape Turing 

Machine accepts. 

En

d 

 

Head 

En

d 

 

En

d 

 

http://en.wikipedia.org/wiki/Multi-tape_Turing_machine
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A Multi-track Turing machine can be formally described as a 6-tuple (Q, X, Σ, δ, 

q0, F) where: 

 Q is a finite set of states 

 

 X is the tape alphabet 

 

 Σ is the input alphabet 

 

 δ is a relation on states and symbols where  

 

δ(Qi, [a1, a2, a3,....]) = (Qj, [b1, b2, b3,....], Left_shift or Right_shift) 

 

 q0 is the initial state 

 

 F is the set of final states 

 

Note: For every single-track Turing Machine S, there is an equivalent multi-

track Turing Machine M such that L(S) = L(M). 

Non-Deterministic Turing machine 

In a Non-Deterministic Turing Machine, for every state and symbol, there are a 

group of actions the TM can have. So, here the transitions are not deterministic. 

The computation of a non-deterministic Turing Machine is a tree of 

configurations that can be reached from the start configuration.  

An input is accepted if there is at least one node of the tree which is an accept 

configuration, otherwise it is not accepted. If all branches of the computational 

tree halt on all inputs, the non-deterministic Turing Machine is called a Decider 

and if for some input, all branches are rejected, the input is also rejected. 

 
A non-deterministic Turing machine can be formally defined as a 6-tuple (Q, X, 

Σ, δ, q0, B, F) where: 

 Q is a finite set of states 

 

 X is the tape alphabet 

 

 Σ is the input alphabet 

 

 δ is a transition function;   

 

δ : Q × X → P(Q × X × {Left_shift, Right_shift}). 

 

http://everything2.com/title/Non+Deterministic+Turing+Machine
http://everything2.com/title/state
http://everything2.com/title/symbol
http://everything2.com/title/Non+Deterministic+Turing+Machine
http://everything2.com/title/Non+Deterministic+Turing+Machine
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 q0 is the initial state 

 

 B is the blank symbol 

 

 F is the set of final states 

Turing Machine with Semi-infinite Tape 

A Turing Machine with a semi-infinite tape has a left end but no right end. The 

left end is limited with an end marker. 

 
 

It is a two-track tape: 

1. Upper track: It represents the cells to the right of the initial head position. 

 

2. Lower track: It represents the cells to the left of the initial head position in 

reverse order. 

The infinite length input string is initially written on the tape in contiguous tape 

cells.  

The machine starts from the initial state q0 and the head scans from the left end 

marker ‘End’. In each step, it reads the symbol on the tape under its head. It 

writes a new symbol on that tape cell and then it moves the head either into left 

or right one tape cell. A transition function determines the actions to be taken. 

It has two special states called accept state and reject state. If at any point of 

time it enters into the accepted state, the input is accepted and if it enters into 

the reject state, the input is rejected by the TM. In some cases, it continues to 

run infinitely without being accepted or rejected for some certain input symbols.  

 
Note: Turing machines with semi-infinite tape are equivalent to standard 

Turing machines. 

En

d 

 

Head 
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Time and Space Complexity of a Turing Machine 

For a Turing machine, the time complexity refers to the measure of the number 

of times the tape moves when the machine is initialized for some input symbols 

and the space complexity is the number of cells of the tape written. 

Time complexity all reasonable functions: 

T(n) = O(n log n) 

TM's space complexity:  

S(n) = O(n) 

Linear Bounded Automata 

A linear bounded automaton is a multi-track non-deterministic Turing machine 

with a tape of some bounded finite length.  

Length = function (Length of the initial input string, constant c) 

Here,  

Memory information ≤ c × Input information  

The computation is restricted to the constant bounded area. The input alphabet 

contains two special symbols which serve as left end markers and right end 

markers which mean the transitions neither move to the left of the left end 

marker nor to the right of the right end marker of the tape. 

A linear bounded automaton can be defined as an 8-tuple (Q, X, Σ, q0, ML, MR, δ, 

F) where: 

 Q is a finite set of states 

 

 X is the tape alphabet 

 

 Σ is the input alphabet 

 

 q0 is the initial state 

 

 ML is the left end marker 

 

 MR is the right end marker where MR≠ ML 

 

 δ is a transition function which maps each pair (state, tape symbol) to 

(state, tape symbol, Constant ‘c’) where c can be 0 or +1 or -1 

 

 F is the set of final states 
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A deterministic linear bounded automaton is always context-sensitive and the 

linear bounded automaton with empty language is undecidable. 

  

End End 

Left End Marker Right End Marker 
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Decidability and Decidable Languages 

A language is called Decidable or Recursive if there is a Turing machine which 

accepts and halts on every input string w. Every decidable language is Turing-

Acceptable. 

 

A decision problem P is decidable if the language L of all yes instances to P is 

decidable. 

For a decidable language, for each input string, the TM halts either at the accept 

or the reject state as depicted in the following diagram: 

  

 

 

 

7. DECIDABILITY  

Accepted 

 

Rejected 

 

Decision on Halt 

 

Input 

 

Turing Machine 

 

Turing acceptable languages 

Decidable 

languages 

Non-Turing acceptable languages 
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Example 1 

Find out whether the following problem is decidable or not: 

Is a number ‘m’ prime?  

Solution 

Prime numbers = {2, 3, 5, 7, 11, 13, …………..} 

Divide the number ‘m’ by all the numbers between ‘2’ and ‘√m’ starting 

from ‘2’. 

If any of these numbers produce a remainder zero, then it goes to the 

“Rejected state”, otherwise it goes to the “Accepted state”. So, here the 

answer could be made by ‘Yes’ or ‘No’. 

Hence, it is a decidable problem. 

Example 2 

Given a regular language L and string w, how can we check if w∈ L?   

Solution 

Take the DFA that accepts L and check if w is accepted  

 

Some more decidable problems are: 

1. Does DFA accept the empty language?  

2. Is L1∩ L2=Ø for regular sets?  

Note: 

1. If a language L is decidable, then its complement L' is also decidable.  

2. If a language is decidable, then there is an enumerator for it. 

w∈ L 

w∉ L 

 

Input 

string w 

 

DFA 

Qf 

 

Qr 

 
Qi 

 

http://en.wikipedia.org/wiki/%C3%98_%28disambiguation%29
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Undecidable Languages 

For an undecidable language, there is no Turing Machine which accepts the 

language and makes a decision for every input string w (TM can make decision 

for some input string though). A decision problem P is called “undecidable” if the 

language L of all yes instances to P is not decidable. Undecidable languages are 

not recursive languages, but sometimes, they may be recursively enumerable 

languages. 

 
Example: 

 The halting problem of Turing machine 

 The mortality problem 

 The mortal matrix problem 

 The Post correspondence problem, etc. 

TM Halting Problem 

Input: A Turing machine and an input string w. 

Problem: Does the Turing machine finish computing of the string w in a finite 

number of steps? The answer must be either yes or no. 

Proof: At first, we will assume that such a Turing machine exists to solve this 

problem and then we will show it is contradicting itself. We will call this Turing 

machine as a Halting machine that produces a ‘yes’ or ‘no’ in a finite amount 

of time. If the halting machine finishes in a finite amount of time, the output 

comes as ‘yes’, otherwise as ‘no’. The following is the block diagram of a Halting 

machine: 

 

    Undecidable languages 

Decidable 

languages 

Non-Turing acceptable languages 

 

http://en.wikipedia.org/wiki/Mortality_%28computability_theory%29
http://en.wikipedia.org/wiki/Post_correspondence_problem
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Now we will design an inverted halting machine (HM)’ as: 

 If H returns YES, then loop forever. 

 If H returns NO, then halt. 

The following is the block diagram of an ‘Inverted halting machine’: 

 

 

Further, a machine (HM)2 which input itself is constructed as follows: 

 If (HM)2 halts on input, loop forever. 

 Else, halt. 

Here, we have got a contradiction. Hence, the halting problem is undecidable. 

Rice Theorem 

Theorem: 

L= {<M> | L (M) ∈ P} is undecidable when p, a non-trivial property of the 

Turing machine, is undecidable. 

If the following two properties hold, it is proved as undecidable: 

Yes  

 Halting 

Machine 

 
No 

 

Qi Qj 

Infinite loop 

 

Yes  

 
Halting 

Machine 

 
No 

 

(HM halts on input w) 

(HM does not halt on input w) 

Input 

string  

 

Input 

string  
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Property 1:  If M1 and M2 recognize the same language, then either 

<M1><M2> ∈ L  or  <M1> <M2> ∉ L 

Property 2:  For some M1 and M2 such that <M1> ∈ L and <M2> ∉ L 

Proof: 

Let there are two Turing machines X1 and X2. 

Let us assume <X1> ∈ L such that  

L(X1) = φ  and  <X2> ∉ L. 

For an input ‘w’ in a particular instant, perform the following steps: 

1. If X accepts w, then simulate X2 on x. 

 

2. Run Z on input <W>. 

 

3. If Z accepts <W>, Reject it; and if Z rejects <W>, accept it. 

If X accepts w, then  

L(W) = L(X2)  and  <W> ∉ P 

If M does not accept w, then  

L(W) = L(X1) = φ and  <W> ∈ P  

Here the contradiction arises. Hence, it is undecidable. 

Undecidability of Post Correspondence Problem 

The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an 

undecidable decision problem. The PCP problem over an alphabet  is stated as 

follows:  

Given the following two lists, M and N of non-empty strings over : 

 

𝑀 =  (𝑥1, 𝑥2, 𝑥3, … … … , 𝑥𝑛 ) 

 

𝑁 =  (𝑦1, 𝑦2, 𝑦3, … … … , 𝑦𝑛 ) 

 

We can say that there is a Post Correspondence Solution, if for some 

𝑖1, 𝑖2, … … … … 𝑖𝑘 , where 1 ≤  𝑖𝑗  ≤  𝑛, the condition  𝑥𝑖1
… … . 𝑥𝑖𝑘

=  𝑦𝑖1
… … . 𝑦𝑖𝑘

 satisfies.  

 

http://en.wikipedia.org/wiki/Emil_Post
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Decision_problem
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Example 

Find whether the lists  

M = (abb, aa, aaa) and N = (bba, aaa, aa)  

have a Post Correspondence Solution? 

Solution 

 x1 x2 x3 

M Abb aa aaa 

N Bba aaa aa 

 

Here,  

 x2 x1x3 = ‘aaabbaaa’    

and y2 y1y3 = ‘aaabbaaa’ 

We can see that   

x2 x1x3 = y2y1 y3  

Hence, the solution is i=2, j =1, and k=3.  

Example 2: 

Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post 

Correspondence Solution? 

Solution 

 x1 x2 x3 

M ab bab bbaaa 

N a ba bab 

 

In this case, there is no solution because: 

| x2 x1x3 | ≠ | y2y1 y3 |  (Lengths are not same) 

Hence, it can be said that this Post Correspondence Problem is undecidable. 

 


