AUTOMATA THEORY
tutorialspoint

S I MPLYEASYULEARNINILG

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia 3 https://twitter.com/tutorialspoint

Automata Theory

About this Tutorial

Automata Theory is a branch of computer science that deals with designing
abstract self-propelled computing devices that follow a predetermined sequence
of operations automatically. An automaton with a finite number of states is
called a Finite Automaton.

This is a brief and concise tutorial that introduces the fundamental concepts of
Finite Automata, Regular Languages, and Pushdown Automata before moving
onto Turing machines and Decidability.

Audience

This tutorial has been prepared for students pursuing a degree in any
information technology or computer science related field. It attempts to help
students grasp the essential concepts involved in automata theory.

Prerequisites

This tutorial has a good balance between theory and mathematical rigor. The
readers are expected to have a basic understanding of discrete mathematical
structures.

Copyright & Disclaimer

© Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of
Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,
copy, distribute or republish any contents or a part of contents of this e-book in
any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as
precisely as possible, however, the contents may contain inaccuracies or errors.
Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,
timeliness or completeness of our website or its contents including this tutorial.
If you discover any errors on our website or in this tutorial, please notify us at
contact@tutorialspoint.com

' tutorialspoint

SIMPLYEASYLEARMING

mailto:contact@tutorialspoint.com

Automata Theory

Table of Contents

About this TULOal.....cceiiiiiiiiiiiiiiiii s s s s s s s s s s s s s s s sssssssssssnnnns i
0T 1= 3 Vot i
o T =T [0 T 1 = i
CoPYright & DiSCIAIMET ...uuuuiiiiiiiiiiiiiiiiiiiiiiiissisisssnss i
LI 1 (=007 00T 11 1Y N i
1. INTRODUCTION. . .uuttttttiuiuiuttitittutitutututetaeaerreraeaeaeeeararararare ... aearaeatararatararasatararararasarasasnsns 1
F T o) 1 1 T ViYL o L £ | ST 1
Related TerminNOIOGIESccccceeerrrrrrrcrrsrssnsssnssnnnnns 1
FA] T | o =1 O T PP TP USSP PPORU PP PPPRUPN 1

) 4 0= 2O T PSR UPPP PPN 1
LENGLN OF @ SEINE .ttt ettt st e st e st e e st e e sabeesabeesabeeeabeesabeeenree s 1
KIBEINE STAT eeveeiie ettt e ettt e e e e e e et e e et e e e ee s aabaaeeeeeeesaasbasaeaeeeeeaassassaasaessasnnstaaaeaeeeesansraaeeeens 2
KIEENE ClLOSUIE / PIUS ..ottt ettt ettt ete et s e et e et eeate e eateeenteesebeeenseesateesnseesabeeenseesnreesnreean 2

LA U it e e e e e e e r e e e e e e e e e e e e e e e e e e aaaes 2
Deterministic and Nondeterministic Finite AUtOmMatoN.......cccceeeeiiiiiiiiieiecniiciiiree e esenneessaees 2
Deterministic Finite AUTOMAtON (DFA)ccccuiiiiiiiie ettt et e e e st e e e e rate e e seasae s e sabaeeeesreeeenseeas 2
Non-deterministic Finite AUtomMaton (NDFA)coooiiiiiiciee et s e e e rire e e s earae e e sra e e e eare e e eeasaeas 4
DFA VS NDFAoeeietiiiiiiiinnretiisisssssssees s sssssssssse s s ssssssssssse s s s ssssssssssssesssssssssssssesssssssssssssneesssssssssssnnsenssssas 5
Acceptors, Classifiers, and TranSAUCErS.........ccccviiiiiiiiiiiiii s e e e e 6
Acceptability by DFA and NDFAccoiiiiiiiiiiiiiiiiiieeieiiiiisssseesssssssssssssessssssssssssssesssssssssssssssssssssssssnas 6
Converting an NDFA to an EQUIValENt DFAccoiiiiiiiiiiiiniiiiinisissses 7
DFA Minimization using Myhill-Nerode Theoremccccverririiiiiiiiiininnnisinnnnnsninnsssssssssssssssssssssssssssssssssses 9
DFA Minimization using EQuUivalence TREOIremcceeeeeiiiiiiiieieeiciciiireereeesscssneeennsssseeesseesnnnsssssssssssnnnns 11
Moore and Mealy MaACRINEScccceeeeeiiiiiiiiiircccirrrreressee s seenesssses s e sesnnssssssssseeennnssssssssssssnnnssssssssssnnnnns 13
Y TE 1AV 1V = Tol oY o TSR 13

Y T Yo T LI\, =Tl o 11 o 1= USSR 13
Mealy Machine vs. M0OOre IMacChine.......ccueoiiiiiiiiiiieite ettt ettt saees 14
Moore Machine to Mealy Machine..........ueiiiiinirrr s s sssssssssssssnnns 15
Mealy Machine to Moore Machineg..........cciiiiiiiiinereiiiiiniinneenineeeesssssssssses s ssssssssssssssssssssnssenns 16
il

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

2. CLASSIFICATION OF GRAMMIARS ..ottt sescrrrereneee s sessiserenesesssesesansnenenesesssesansnenens 18
[= 14T = 18
Derivations from @ GramMMArccciiiiieriiiiiiiiiiinnseetiiiiiissssesiiiisssssssssesssisssssssssessssssssssssssssssssssssssssssnss 19
Language Generated by @ Grammar........ccccccceeeeisiesssnsns 19
Construction of a Grammar Generating @ LangUAge........ccccvveereiiiiiiiiiinneeeiiiinisisisseesisssssssssssesssssssssssssnns 20
Chomsky Classification Of Grammarsccccciiiiiiiiiiiiiiniiiiiiiissssssssssssses 22

BN L N C1 - 10010 0 T SO TP UPPPP T ORPPPP 23
BN LA C1 ¢ 10010 1 I O TSP UPPPP PP 23
LY Lo N T =11 4101 =T SO PP PP PPPPPPPPPPPPPRt 24
BN L= N Ol =11 4100 T SO PP PP POPPPPPPPPPPPRt 24

3. REGULAR GRAMMARS ..., 26

REEUIAI EXPIESSIONSueueeeeeeennnnnnnnnnnsnnsssnnns 26

SOME RE EXAMPIES oiiiiiiiieeeiiie ettt ettt e e ettt e e et e e e et e e e e e bae e e sbbeeeessteeeeeasaaeesasbeaeastaeesassaaeesasseseasteeenansenns 26
REEBUIAK SEES c.cuuvvvrrernnnnnnnnnnss 27

Properties Of REGUIAI SETSii ittt st st e e sae e e sbe e sareesbe e e saneeaees 27
Identities Related to Regular EXPressionsccccvveeeeiiiiiiisiinneeiiiisisissnseeniiisssssnsssessssssssssssseessssssssssssenns 30
Yo L= 4 4 =T = o N 30
Construction of an FA from an REccccceeiiiiiiiiiiinnnniiiiiniisnnssenisisssssssseesssisssssssssesssssssssssssssssssssssssssssans 34
Finite Automata With NUIl MOVES (NFA-E).......cccceerrrrrrrrrrrrrsrsssssssssssssssssssssssssssssssnsssssssssssssssssssssssssssssnnnnns 36
Removal of Null Moves from Finite AUEOMALacciiiiiiiiirereiiiiiiiiinnreeniiisssnsssesssssssssssnssesssssssssssnnsanns 36
Pumping Lemma for RegUIAr LANGUAEZES.........ccceeererrrrrsessnssnsnnns 38

Applications Of PUMPING LEMMA......uiiiieiie ettt e e e tee e e s ette e e eate e e eeabaeeesabaeeeestaeeeeanenas 39
Complement Of @ DFA iiiiiiiiiiiiininiiissiiss 40

4. CONTEXT-FREE GRAMMIARSoooiiiiiiiiiectieeeeeeeeeeeeeeeeeee e e e e eeeeeseeeeeeeseeeseeeeeeeseeeseaeeeeeeeeeeenenees 42
(701310=) 4 2 X =T 1 - 11 11 1 T- | U 42
Generation Of DErivation TrEeciiiivveeeiiiiiiiiiiineiiiiisissstee s sssssees s sssssssssssssssssssssssssesssssssssssnnnnnns 42

RePreseNntation TECNNIGUE:uiiiiie ettt e e e e e e et e e e e e e s esattb e e e e e e sesanbaeseeaeeesanntaraeaaens 42
Derivation OF Yield Of @ TrEe....cu ittt ettt e e st e e s ebbe e e sbaeeeesabeeessanee 43
Sentential Form and Partial Derivation TrEEcuuiiii ittt 44
Leftmost and Rightmost Derivation of @ StriNgcoiiiiiiiiiiiii e 45
Ambiguity in Context-Free Grammars........cccovieeeeeeiceiriieeemenssessreeeenmnsssessseesesnsssssssssesesnnssssssssssssnnssssssssenes 47
ifi

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

ClOSUrE Property Of CFL.....ccccciiiiiiiiiiiiiiisiiississsnsns 49
L8] To T OO PTPUPUPRORPIE 49

(Ofe] g Tor=) (=T g = | A o] o H PSSP PPN 49
Lo oI -] T S PRSP TRTP PP 49
SIMPlIfication Of CFGS ...ccciiiiiiiiiiiiiiiiiiiiii s s s s s s s s s s s s s s s ssssssssssssssssnns 50
[2¥=Te [¥ o 4o o e} A 01 =L C TSP PPPPRN 50
Removal of UNit ProdUCTIONSoiviiiiiiiie ettt e st e s s tae e e e s e e e ssateeessbaaeesssbeeeenanes 51
RemMOVal Of NUI ProUCTIONS ...ccoieiieiiiiiie ettt sttt e st e e st e e e saba e e ssasaee s snaaeesnnbeeesnanns 53
ChomsKy NOIMal FOIMcuiiiiiiiiiiiiiiiiiiiiiiisiiissses 54
Greibach NOrmMal FOrM....cciiieeriiiiiiiinneeetiiiisssssseesss s ssssssesssssssssssssssssssssssssnsssessssssssssnnsssssssssssssnnnnnns 56
Left and Right RECUISIVE GramMMArSccccceeriiiiissnnns 57
Pumping Lemma for CONteXt-Fre@ GrammMarsS.........cccceeeeeeerssnnns 58
Applications Of PUMPING LEMMA....c.cuiiiieiie ettt et e e e tre e e s etae e e e sata e e seataeeesataeeeestaeesensaeas 58
PUSHDOWN AUTOMATA ... n s n s annnnnnnnnnnnnnnnnnnnn 59
BasSiC STrUCTUIE Of PDAuuueiiiiiiiiiiiiiinettiiinsinesrees s sssssssssee s ssssssassse s s s sssssssssssesssssssssssnssessssssssssnnnsnnns 59
Terminologies Related tO PDAceeeeeeeeeemeeeeeeeeemeeeeeemmssesssnss 60
INSTANTANEOUS DESCIIPLION «..eeiiiiiiiieieiie ettt s e e e r e s rr e s snnee e e snreeesnnne 60
TUPNSTHE NOTALION .veiiiiiiiie ettt et st e s te e st e e st e e s bt e s beesabeesabeesabeesabaessbeesabeesnseesabessnseennns 61

Y X ool=T o] = Lol <)V 2 0 NNt 61
e I = Ll A Yelot =Y o] 2 o 11 L1 4V SRRt 61
0 AV = Lol QX elol =T o =1 o 11 L] YA ST SSUPPROt 61
Correspondence between PDA and CFLcoiiiiiiieeeiiiiiiiiiiisccsnrneeenesssssssesssnnssssssssssssnnnsssssssssssnnnnsssnns 63
Parsing @nd PDA........uuuueurssns 64
DESIN Of TOP-DOWN PaISEIuiiiiciiieeeiiiie ettt e scttee e e sttt e e stee e e sttt e e essteeeessteeessseeeessseeesanseeessnsseesessseeesnnns 65
DesSign Of @ BOTEOM-UP ParSEr ...cuuiiiieeiiieceiiee e cteee ettt e et e e sttt e e et e e e s aee e e sbaeeeesstaeessnseeeesnnseeessnsseesannns 65
TURING MAGCHINE-........u ittt s s s na e s anasanannsnnannnnnnnnnnnnnnn 67
[T=T 411 4o 3 R PTTRNE 67
Accepted Language and Decided LANGUAEGEccceeueeeiiiiiiieieeniiiiiiiierneesssessseeennnssssssssseennnsssssssssssnnnnsssssssanes 68
Designing @ TUINNG IMACKINEuviiiei it e e e e e et e e e e e e s et b areeeeeesnnstaareeaeas 68
Multi-tape TUFNG MAChiNecooeeeeeeeiceeeeeeicccc et ce e s s e s e eness e s e s e e e s nnnssssssssesennnsssssssseeennnnsssssssnnennnnns 70
Multi-track TUFING MACRINEG ... e e e e s s e e e nna s s e s s s e e e snasssssssseeesnansssssssnnennnnns 71
Non-Deterministic TUFiNG MACRINEeueeiiiiiirrcrrrrrr s s s sssssssssssssssssssssssssnnns 72
iv

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Turing Machine with Semi-infiNite TAPEceesesessessssesssssssssssssssssssssssssssnns 73
Time and Space Complexity of @ Turing Machine.eeseeeeseessssssssssssssssnne 74
Linear Bounded AULOMAtaccicvuiiiiiieiiiiiieeiiiieeiiieeeisssessssseessssssessssaseesessasesssssssessssssessessasessessnneses 74
DECIDABILITY «eeeeietetet e eeeritiette e e e e e st te e e e s e sesminereneeesesssnansseneaesesesaansneneneaesssssansnsnene 76
Decidability and Decidable LangUAgEscccevvvemreiiiiiiiiiiineeeiiiiiiinseesssisssssssesssssssssssssessssssssssssssnnns 76
Undecidable LAanGUAGESccceeeiiiiiiiiiimreiiiiiiiiiiinnietisississsssesssssssssssssssssssssssssssssessssssssssssssesssssssssssnssenss 78
TM Halting Problem ...ttt sass s s s asss e s s s s 78
3 q Lot I =T 0 =T o 79
Undecidability of Post Correspondence Problem............ccccciieeriiiiiiiissnnes 80

Vv

' tutorialspoint

SIMPLYEASYLEARMING

1. INTRODUCTION

Automata—-What is it?

The term "Automata" is derived from the Greek word "avTopara" which means
"self-acting". An automaton (Automata in plural) is an abstract self-propelled
computing device which follows a predetermined sequence of operations
automatically.

An automaton with a finite number of states is called a Finite Automaton (FA)
or Finite State Machine (FSM).

Formal definition of a Finite Automaton
An automaton can be represented by a 5-tuple (Q, Z, 9§, qo, F), where:
e Qs a finite set of states.
e X is a finite set of symbols, called the alphabet of the automaton.
e O is the transition function.
e (qois the initial state from where any input is processed (qo € Q).
e F is a set of final state/states of Q (F € Q).

Related Terminologies

Alphabet

¢ Definition: An alphabet is any finite set of symbols.

e Example: Z = {a, b, ¢, d} is an alphabet set where ‘a’, 'b’, 'c’, and 'd’
are alphabets.

String

e Definition: A string is a finite sequence of symbols taken from .

e Example: ‘cabcad’ is a valid string on the alphabet set 2 = {a, b, ¢, d}

Length of a String
e Definition : It is the number of symbols present in a string. (Denoted by
ISI).

o

@' tutorialspoint

SIMPLYEASYLEARNING

Automata Theory

e Examples:
o If S='cabcad’, |S|=6
o If|S|= 0, itis called an empty string (Denoted by A or g€)

Kleene Star

e Definition: The set £* is the infinite set of all possible strings of all
possible lengths over Z including A.

e Representation: " =3,U3; U 3, U.......
e Example: If = = {a, b}, =*= {A, a, b, aa, ab, ba, bb,........... S

Kleene Closure / Plus

e Definition: The set Z* is the infinite set of all possible strings of all
possible lengths over Z excluding A.

e Representation: 2t =2,U 2; U 2, U.......
St=232*—-{ A}

e Example: If 3 ={a,b},z*={ a, b, aa, ab, ba, bb,........... ¥

Language

¢ Definition : A language is a subset of Z* for some alphabet . It can be
finite or infinite.

¢ Example : If the language takes all possible strings of length 2 over Z =
{a, b}, then L = { ab, bb, ba, bb}

Deterministic and Nondeterministic Finite Automaton

Finite Automaton can be classified into two types:

e Deterministic Finite Automaton (DFA)
¢ Non-deterministic Finite Automaton (NDFA / NFA)

Deterministic Finite Automaton (DFA)

In DFA, for each input symbol, one can determine the state to which the
machine will move. Hence, it is called Deterministic Automaton. As it has a

2

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

finite number of states, the machine is called Deterministic Finite Machine or
Deterministic Finite Automaton.

Formal Definition of a DFA

A DFA can be represented by a 5-tuple (Q, Z, 3, qo, F) where:

e Q is a finite set of states.

e X is a finite set of symbols called the alphabet.

e O is the transition function where d: Q x 2 — Q

e Qo is the initial state from where any input is processed (qo € Q).
e F is a set of final state/states of Q (F € Q).

Graphical Representation of a DFA

A DFA is represented by digraphs called state diagram.

e The vertices represent the states.

e The arcs labeled with an input alphabet show the transitions.

e The initial state is denoted by an empty single incoming arc.

e The final state is indicated by double circles.

Example

Let a deterministic finite automaton be —»

e Q=A{a b}

e 2=A{0,1},
b qo:{a}l
e F={c}, and

e Transition function d as shown by the following table:

Present State

A
B

Cc

' tutorialspoint

SIMPLYEASYLEARMING

Next State for Next State for
Input O Input 1
a b
C a
b C

Automata Theory

Its graphical representation would be as follows:

DFA - Graphical Representation

Non-deterministic Finite Automaton (NDFA)

In NDFA, for a particular input symbol, the machine can move to any
combination of the states in the machine. In other words, the exact state to
which the machine moves cannot be determined. Hence, it is called Non-
deterministic Automaton. As it has finite number of states, the machine is
called Non-deterministic Finite Machine or Non-deterministic Finite
Automaton.

Formal Definition of an NDFA
An NDFA can be represented by a 5-tuple (Q, %, 0, qo, F) where:

e Q is a finite set of states.
e X is a finite set of symbols called the alphabets.

e O is the transition function where 8: Q x {Z U €} — 2Q
(Here the power set of Q (2?2) has been taken because in case of NDFA,
from a state, transition can occur to any combination of Q states)

¢ (o is the initial state from where any input is processed (qo € Q).
e Fis a set of final state/states of Q (F € Q).

Graphical Representation of an NDFA: (same as DFA)
An NDFA is represented by digraphs called state diagram.
e The vertices represent the states.
e The arcs labeled with an input alphabet show the transitions.

e The initial state is denoted by an empty single incoming arc.

' tutorialspoint

LYEASYLEARMNINEG

e The final state is indicated by double circles.

Example

Let a non-deterministic finite automaton be —»

e Q=A{a, b, c}
e >=4{0,1}

e qo=Aa}

e F={c}

e The transition function & as shown below:

Next State for
Present State

Input O
a a, b
b C
C b, c

Its graphical representation would be as follows:

Automata Theory

Next State for
Input1l
b
a,c
c

NDFA - Graphical Representation

DFAvs NDFA
The following table lists the differences between DFA and NDFA.
DFA NDFA
The transition from a state is to a single The transition from a state can be to
particular next state for each input multiple next states for each input symbol.
symbol. Hence it is called deterministic. Hence it is called non-deterministic.

Empty string transitions are not seen in
DFA.

NDFA permits empty string transitions.

Backtracking is allowed in DFA

possible.

In NDFA, backtracking is not always

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Requires more space. Requires less space.

A string is accepted by a NDFA, if at least
one of all possible transitions ends in a
final state.

A string is accepted by a DFA, if it transits
to a final state.

Acceptors, Classifiers, and Transducers

Acceptor (Recognizer)

An automaton that computes a Boolean function is called an acceptor. All the
states of an acceptor is either accepting or rejecting the inputs given to it.

Classifier

A classifier has more than two final states and it gives a single output when it
terminates.

Transducer

An automaton that produces outputs based on current input and/or previous
state is called a transducer. Transducers can be of two types:

e Mealy Machine The output depends both on the current state and the
current input.

e Moore Machine The output depends only on the current state.

Acceptability by DFAand NDFA

A string is accepted by a DFA/NDFA iff the DFA/NDFA starting at the initial state
ends in an accepting state (any of the final states) after reading the string
wholly.

A string S is accepted by a DFA/NDFA (Q, Z, 0, qo, F), iff
0*(qo, S) € F

The language L accepted by DFA/NDFA is
{S|S e z*x and d*(qo, S) € F}

A string S’ is not accepted by a DFA/NDFA (Q, Z, 9, qo, F), iff
3*(qo, S") ¢F

The language L’ not accepted by DFA/NDFA (Complement of accepted language
L) is

{S|S € =* and 3*(qo, S) ¢ F}

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

Example

Let us consider the DFA shown in Figure 1.3. From the DFA, the acceptable
strings can be derived.

Acceptability of strings by DFA

Strings accepted by the above DFA: {0, 00, 11, 010, 101, b
Strings not accepted by the above DFA: {1, 011, 111,)

Converting an NDFAto an Equivalent DFA

Problem Statement

Let X = (Qx, £, Ox, qo, Fx) be an NDFA which accepts the language L(X). We
have to design an equivalent DFA'Y = (Qy, Z, 8y, qo, Fy) such that L(Y) = L(X).
The following procedure converts the NDFA to its equivalent DFA:

Algorithm 1
Input: An NDFA

Output: An equivalent DFA

Step 1 Create state table from the given NDFA.

Step 2 Create a blank state table under possible input alphabets for the
equivalent DFA.

Step 3 Mark the start state of the DFA by qo (Same as the NDFA).

Step 4 Find out the combination of States {Qo, Qi,... , Qn} for each

possible input alphabet.

Step 5 Each time we generate a new DFA state under the input alphabet
columns, we have to apply step 4 again, otherwise go to step 6.

7

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Step 6 The states which contain any of the final states of the NDFA are the

final states of the equivalent DFA.

Example

Let us consider the NDFA shown in the figure below.

q 6(q,0) 6(q,1)
a | {a,b,cd,e} {d,e}
b {c} {e}

c 0 {b}
d {e} 0)

e @ @

Using Algorithm 1, we find its equivalent DFA
shown in below.

. The state table of the DFA is

q 6(q,0) 6(q,1)
a {a,b,c,d,e} {d,e}
{a,b,c,d,e} {a,b,c,d,e} {b,d,e}
{d,e} e D
{b,d,e} {c,e} E
e))
d e)
{c,e}) B
b C E
C) B

State table of DFA equivalent to NDFA

\ tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

The state diagram of the DFA is as follows:

1 0

State diagram of DFA

DFA Minimization using Myhill-Nerode Theorem

Algorithm 2
Input DFA

Output Minimized DFA

Step 1 Draw a table for all pairs of states (Q;, Q;) not necessarily connected
directly [All are unmarked initially]

Step 2 Consider every state pair (Q;, Q;) in the DFA where Qe Fand Q; ¢ F
or vice versa and mark them. [Here F is the set of final states]

Step 3 Repeat this step until we cannot mark anymore states:

If there is an unmarked pair (Qi, Q;), mark it if the pair {&(Qi, A),
0 (Qi, A)} is marked for some input alphabet.

Step 4 Combine all the unmarked pair (Qi, Q;) and make them a single
state in the reduced DFA.

' tutorialspoint

SIMPLYEASYLEARMING

Example

Let us use Algorithm 2 to minimize the DFA shown below.

Step 1 : We draw a table for all pair of states.

»

>

[

»

©)
©

State Diagram of DFA

Automata Theory

a b (o d e f
a
b
(o
d
e
f
Step 2 : We mark the state pairs:
a b c d e f

NENEN

YRR - N RE-Ak)
ANENEN

v

v

v

Step 3 : We will try to mark the state pairs, with green colored check mark,
transitively. If we input 1 to state ‘a’ and ‘f’, it will go to state ‘¢’ and 'f’
respectively. (c, f) is already marked, hence we will mark pair (a, f). Now, we
input 1 to state 'b’ and 'f’; it will go to state ‘d’ and ‘f’ respectively. (d, f) is

already marked, hence we will mark pair (b, f).

a

b

(o]

d

' tutorialspoint

PLYEASYLEARNING

10

Automata Theory

KRR -N,]
NENENEN
NENENEN

v

v

v

After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that

are unmarked.

We can recombine {c, d} {c, e} {d, e} into {c, d, e}

Hence we got two combined states as: {a, b} and {c, d, e}

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}

State diagram of reduced DFA

DFA Minimization using Equivalence Theorem

If X and Y are two states in a DFA, we can combine these two states into {X, Y}
if they are not distinguishable. Two states are distinguishable, if there is at least
one string S, such that one of & (X, S) and & (Y, S) is accepting and another is
not accepting. Hence, a DFA is minimal if and only if all the states are

distinguishable.

Algorithm 3

Step 1: All the states Q are divided in two partitions: final states and non-
final states and are denoted by Po. All the states in a partition are
0t equivalent. Take a counter k and initialize it with 0.

Step 2: Increment k by 1. For each partition in Py, divide the states in Py
into two partitions if they are k-distinguishable. Two states within
this partition X and Y are k-distinguishable if there is an input S
such that 8(X, S) and 8(Y, S) are (k-1)-distinguishable.

' tutorialspoint

SIMPLYEASYLEARMING

11

Automata Theory

Step 3: If P« # Px-1, repeat Step 2, otherwise go to Step 4.

Step 4: Combine k™ equivalent sets and make them the new states of the
reduced DFA.

Example
Let us consider the following DFA:

q | 4@,0) | q,1)
a b C
b a d
C e f
d e f
e e f
f f f

DFA
Let us apply Algorithm 3 to the above DFA:
e Po={(cd,e), (a,bf)}
e P:={(cde), (a,b),(f)}
e P,={(cd,e), (a,b),()}

Hence, P1 = Pa.

There are three states in the reduced DFA. The reduced DFA is as follows:

Q 6(q,0) | o(q,1)
(a, b) (a, b) (c,d,e)
(c,d,e) | (cd,e) (f)

(f) (f) (f)

State Table and State Diagram of Reduced DFA

12

' tutorialspoint

SIMPLYEASYLEARMNINEG

Automata Theory

Moore and Mealy Machines

Finite automata may have outputs corresponding to each transition. There are
two types of finite state machines that generate output:

e Mealy Machine

e Moore machine

Mealy Machine

A Mealy Machine is an FSM whose output depends on the present state as well
as the present input.

It can be described by a 6 tuple (Q, %, O, 0, X, qo) where:

e Q is a finite set of states.

e I is a finite set of symbols called the input alphabet.

e O is a finite set of symbols called the output alphabet.
e O is the input transition function where d: Q x ~ - Q
e X is the output transition function where X: Q - O

e (Qois the initial state from where any input is processed (qo € Q).

The state diagram of a Mealy Machine is shown below:

/\/o

State diagram of a Mealy Machine

Moore Machine

Moore machine is an FSM whose outputs depend on only the present state.
A Moore machine can be described by a 6 tuple (Q, Z, O, 8, X, qo) where:

e Qs a finite set of states.

e X is a finite set of symbols called the input alphabet.
13

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

e O is a finite set of symbols called the output alphabet.
e O is the input transition function where d: Q x ~ - Q
e X is the output transition function where X: Qx < — O

e (qois the initial state from where any input is processed (qo € Q).

The state diagram of a Moore Machine is shown below:

State diagram of a Moore Machine

Mealy Machine vs. Moore Machine

The following table highlights the points that differentiate a Mealy Machine from
a Moore Machine.

Mealy Machine Moore Machine

Output depends both upon present Output depends only upon the present

state and present input. state.

Generally, it has fewer states than Generally, it has more states than

Moore Machine. Mealy Machine.

Output changes at the clock edges. Input change can cause change in
output change as soon as logic is
done.

Mealy machines react faster to In Moore machines, more logic is

inputs needed to decode the outputs since it

has more circuit delays.

14

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Moore Machine to Mealy Machine

Algorithm 4

Input: Moore Machine

Output: Mealy Machine

Step 1 Take a blank Mealy Machine transition table format.
Step 2 Copy all the Moore Machine transition states into this table format.
Step 3 Check the present states and their corresponding outputs in the

Moore Machine state table; if for a state Q; output is m, copy it into
the output columns of the Mealy Machine state table wherever Q;
appears in the next state.

Example
Let us consider the following Moore machine:
Next State
P:t!:::t a=0 a=1 Output
—a d b 1
b a d 0
C C C 0
d b a 1

State table of a Moore Machine

Now we apply Algorithm 4 to convert it to Mealy Machine.

Step 1 & 2:
Next State
Present State a=0 a=1
State | Output | State | Output

—a d b

a d

c c C

d b a

The partial state table after steps 1 and 2

15

' tutorialspoint

LY ASYLEARNIMNLEG

Step 3:

Automata Theory

Next State
Present State =0 a=1
State | Output | State | Output
=>a d 1 b 0
b a 1 d 1
C C 0 C 0
d b 0 a 1

State table of an equivalent Mealy Machine

Mealy Machine to Moore Machine

Algorithm 5:

Input:
Output:
Step 1

Step 2

Step 3

Example

Mealy Machine
Moore Machine

Calculate the number of different outputs for each state (Qi) that
are available in the state table of the Mealy machine.

If all the outputs of Q;are same, copy state Q. If it has n distinct
outputs, break Qi into n states as Qn wheren =0, 1, 2.......

If the output of the initial state is 1, insert a new initial state at the
beginning which gives 0 output.

Let us consider the following Mealy Machine:

Next State
Present a=0 a=1
State
ML Output L Output
State State
—a d 0 b 1
b a 1 d 0
C C 1 C 0
d b 0 a 1

State table of a Mealy Machine

Here, states ‘a’ and ‘d’ give only 1 and 0 outputs respectively, so we retain
states ‘a’ and ‘d’. But states ‘b’ and ‘¢’ produce different outputs (1 and 0). So,
we divide b into be, b1 and c into co, C1.

16

' tutorialspoint

LYEASYLEARNINE G

Present Next State Output
State a=0|a=1
—a d b1 1
bo a d 0
b1 a d 1
Co Ci1 Co 0
Ci1 Ci1 Co 1
d bo a 0

Automata Theory

State table of equivalent Moore Machine

\ tutorialspoint

SIMPLYESA

F¥LEARMINIG

17

2. CLASSIFICATION OF GRAMMARS

In the literary sense of the term, grammars denote syntactical rules for
conversation in natural languages. Linguistics have attempted to define
grammars since the inception of natural languages like English, Sanskrit,
Mandarin, etc. The theory of formal languages finds its applicability extensively
in the fields of Computer Science. Noam Chomsky gave a mathematical model
of grammar in 1956 which is effective for writing computer languages.

Grammar

A grammar G can be formally written as a 4-tuple (N, T, S, P) where

e N or Vy is a set of Non-terminal symbols
e Tor is aset of Terminal symbols
e S s the Start symbol, Se€ N

e P is Production rules for Terminals and Non-terminals

Example

Grammar G1:

({S, A, B}, {a, b}, S, {S —AB, A —a, B —b})
Here,

S, A, and B are Non-terminal symbols;

a and b are Terminal symbols

S is the Start symbol, S e N

Productions, P : S —AB, A —a, B —b

Example:
Grammar G2:

({S, A}, {a, b}, S,{S — aAb, aA —aaAb, A—¢c })
Here,

S and A are Non-terminal symbols.

a and b are Terminal symbols.

€ is an empty string.

18

o

@' tutorialspoint

SIMPLYEASYLEARNING

Automata Theory

S is the Start symbol, S € N
Production P : S — aAb, aA —aaAb, A—¢

Derivations from a Grammar

Strings may be derived from other strings using the productions in a grammar.
If a grammar G has a production a -» B, we can say that x a y derives x By in
G. This derivation is written as:

G
xay = xfy

Example

Let us consider the grammar:
G2 = ({S, A}, {a, b}, S, {S — aAb, aA —aaAb, A—¢ })

Some of the strings that can be derived are:

S = aAb using production S — aAb
= aaAbb using production aA — aAb
= aaaAbbb using production aA — aAb
= aaabbb using production A — €

Language Generated by a Grammar

The set of all strings that can be derived from a grammar is said to be the
language generated from that grammar. A language generated by a grammar G
is a subset formally defined by

G
LG ={W|W e X", S=>WwW}
If L(G1) = L(G2), the Grammar G1 is equivalent to the Grammar G2.

Example

If there is a grammar
G: N={S,A, B}y T=4{a b} P={S—->AB, A—a B-b}

Here S produces AB, and we can replace A by a, and B by b. Here, the only
accepted string is ab, i.e.,

L(G) = {ab}
19

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

Example
Suppose we have the following grammar:

G: N={S,A,B} T={a, b} P={S —>AB, A —>aAla, B —bB|b}
The language generated by this grammar:

L(G) = {ab, a%b, ab?, a%b?, 3

Construction of a Grammar Generating a Language

We'll consider some languages and convert it into a grammar G which produces
those languages.

Example

Problem Suppose, L (G) = {@a™b" | m = 0 and n > 0}. We have to find out
the grammar G which produces L(G).

Solution

Since L(G) ={a™b" | m=0andn > 0}

the set of strings accepted can be rewritten as:
L(G) = {b, ab,bb, aab, abb,)

Here, the start symbol has to take at least one ‘b’ preceded by any number of ‘a’
including null.

To accept the string set {b, ab,bb, aab, abb, ¥, we have taken the
productions:

S—aS,S—-B,B—-bandB — bB

S —-B— b (Accepted)

S —-B— bB — bb (Accepted)

S —aS —aB—ab (Accepted)

S —aS —aaS —aaB — aab(Accepted)
S —aS —aB—abB— abb (Accepted)

Thus, we can prove every single string in L(G) is accepted by the language
generated by the production set.

Hence the grammar:

G: ({S,A B}, {ab}S {S—aS|B, B—-b|bB})

20

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Example

Problem: Suppose, L (G) = {@a™b" | m> 0 and n = 0}. We have to find out
the grammar G which produces L(G).

Solution:

Since L(G) = {@™b" | m> 0 and n = 0}, the set of strings accepted can be
rewritten as:

L(G) = {a, aa, ab, aaa, aab ,abb, ¥

Here, the start symbol has to take at least one ‘a’ followed by any number of ‘b’
including null.

To accept the string set {a, aa, ab, aaa, aab, abb, ¥, we have taken the
productions:

S—>aA,A—>aA,A—>B,B— bB,B— A

S — aA — aB— aA—a (Accepted)

S —» aA — aaA— aaB — aaA—aa (Accepted)

S —aA —aB—abB— abA — ab (Accepted)

S — aA — aaA— aaaA—aaaB — aaal—aaa (Accepted)
S — aA —» aaA— aaB—aabB — aabA—aab (Accepted)

S —» aA —» aB— abB—abbB — abbA—abb (Accepted)

Thus, we can prove every single string in L(G) is accepted by the language
generated by the production set.

Hence the grammar:

G: ({S, A, B}, {a, b}, S, {S—>aA A—aA|B, B—A|bB})

21

' tutorialspoint

SIMPLYEASYLEARMING

Chomsky Classification of Grammars

Automata Theory

According to Noam Chomosky, there are four types of grammars: Type 0, Type
1, Type 2, and Type 3. The following table shows how they differ from each

other:
Grammar Grammar Language Automaton
Type Accepted Accepted
Type O Unrestricted grammar Recursively Turing machine
enumerable language
Type 1 Context-sensitive Context-sensitive Linear-bounded
grammar language automaton
Type 2 Context-free grammar Context-free language | Pushdown
automaton
Type 3 Regular grammar Regular language Finite state
automaton

Take a look at the following illustration. It shows the scope of each type of
grammar:

' tutorialspoint

SIMPLYEATS

F¥LEARMINIG

22

Automata Theory

Recursively Enumerable

Context-Sensitive

Context - Free

Regular

Containment of Type 3 < Type 2 C Type 1 < Type O

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a
single non-terminal on the left-hand side and a right-hand side consisting of a
single terminal or single terminal followed by a single non-terminal.

The productions must be in the form X — a or X — aY

where X, Y € N (Non terminal)

and a €T (Terminal)

The rule S — € is allowed if S does not appear on the right side of any rule.

Example

X — €
X —a

X — aY

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form A =y
23

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

where A € N (Non terminal)

and Yy € (TUN)" (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-
deterministic pushdown automaton.

Example

S-»>Xa
X~ a
X » aX
X = abc
X

> &

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must
be in the form

aAB—ayB
where A € N (Non-terminal)
and a, B,y € (T UN)* (Strings of terminals and non-terminals)

The strings a and B may be empty, but y must be non-empty.

The rule S — € is allowed if S does not appear on the right side of any rule. The

languages generated by these grammars are recognized by a linear bounded
automaton.

Example

AB - AbBc
A > bcA
B->b

Type - 0 Grammar

Type-0 grammars denerate recursively enumerable languages. The
productions have no restrictions. They are any phase structure grammar
including all formal grammars.

24

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of a— B where a is a string of terminals and

non-terminals with at least one non-terminal and a cannot be null. B is a string
of terminals and non-terminals.

Example

S -» ACaB
Bc » acB
CB - DB
aD » Db

25

' tutorialspoint

SIMPLYEASYLEARMING

3. REGULAR GRAMMARS

Regular Expressions

A Regular Expression can be recursively defined as follows:

1. € is a Regular Expression indicates the language containing an empty
string. (L (g) = {€})

2. @ is a Regular Expression denoting an empty language. (L (¢) = { })

3. x is a Regular Expression where L={x}

4. If X is a Regular Expression denoting the language L(X) and Y is a Regular
Expression denoting the language L(Y), then

(@) X+Y is a Regular Expression corresponding to the language
L(X) U L(Y) where L(X+Y) = L(X) U L(Y).

(b) X.Y is a Regular Expression corresponding to the Ilanguage
L(X) . L(Y) where L(X.Y)= L(X) . L(Y)

(c) R¥* is a Regular Expression corresponding to the language L(R¥*)
where L(R*) = (L(R))*
5. If we apply any of the rules several times from 1 to 5, they are Regular
Expressions.

Some RE Examples

Regular Regular Set
Expression

(0+10%*) L.={0,1, 10,100, 1000, 10000, ... }

(0*10%) L={1, 01, 10, 010, 0010, ...}

(0+€)(1+ €) L={g 0, 1, 01}

Set of strings of a’s and b’s of any length including the null

26

o

@' tutorialspoint

SIMPLYEASYLEARNING

Automata Theory

(a+b)* string. SoL={¢, 0, 1,00,01,10,11,....... >
(a+b)*abb Set of strings of a’s and b’s ending with the string abb,
So L = {abb, aabb, babb, aaabb, ababb, s
(11)* Set consisting of even number of 1’s including empty string,
Sol={g 11, 1111, 111111, >
(aa)*(bb)*b Set of strings consisting of even number of a’s followed by

odd number of b’s , so L= {b, aab, aabbb, aabbbbb, aaaab,
aaaabbb, >

(aa + ab + ba +

String of a’s and b’s of even length can be obtained by
concatenating any combination of the strings aa, ab, ba and

bb)* bb including null, so L= {aa, ab, ba, bb, aaab, aaba,
............. O
Regular Sets
Any set that represents the value of the Regular Expression is called a Regular
Set.
Properties of Regular Sets

Property 1. The union of two regular set is regular.

Proof:

Let us take two regular expressions

So,

and

RE; = a(aa)* and RE; = (aa)*

Li= {a, aaa, aaaaa,..... b (Strings of odd length excluding Null)
L.={ ¢, aa, aaaa, aaaaaa,....... } (Strings of even length including Null)
Liu L, = { €,a,aa, aaa, aaaa, aaaaa, aaaaaa,....... ¥

(Strings of all possible lengths including Null)

27

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

RE (LiU L) = a* (which is a regular expression itself)

Hence, proved.

Property 2. The intersection of two regular set is regular.
Proof:

Let us take two regular expressions

RE: = a(a*) and RE; = (aa)*
So, Li=<{a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)
L. ={ €, aa, aaaa, aaaaaa,....... ¥ (Strings of even length including Null)
LiN L2 = { aa, aaaa, aaaaaa,....... } (Strings of even length excluding Null)

RE (L: N L2) = aa(aa)* which is a regular expression itself.

Hence, proved.

Property 3. The complement of a regular set is regular.

Proof:

Let us take a regular expression:
RE = (aa)*

So, L = {g, aa, aaaa, aaaaaa, } (Strings of even length including Null)

Complement of L is all the strings that is not in L.

So, L'={a, aaa, aaaaa, > (Strings of odd length excluding Null)
RE (L") = a(aa)* which is a regular expression itself.

Hence, proved.

Property 4. The difference of two regular set is regular.
Proof:
Let us take two regular expressions:

RE: = a (a%*) and RE; = (aa)*

So, Li={a,aa, aaa, aaaa,} (Strings of all possible lengths excluding Null)

28

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

L. = { €, aa, aaaa, aaaaaa,....... } (Strings of even length including Null)

L: - L, = {a, aaa, aaaaa, aaaaaaa,}

(Strings of all odd lengths excluding Null)

RE (L: - L2) = a (aa)* which is a regular expression.

Hence, proved.

Property 5. The reversal of a regular set is regular.
Proof:
We have to prove LRis also regular if L is a regular set.
Let, L= {01, 10, 11, 10}

RE (L)= 01 + 10 + 11 + 10

LR= {10, 01, 11, 01}

RE (L?)= 01+ 10+ 11410 which is regular

Hence, proved.

Property 6. The closure of a regular set is regular.
Proof:
If L = {a, aaa, aaaaa, } (Strings of odd length excluding Null)
i.,e., RE (L) =a (aa)*
L*= {a, aa, aaa, aaaa , aaaaa,.............. } (Strings of all lengths excluding Null)
RE (L*) = a (a)*

Hence, proved.

Property 7. The concatenation of two regular sets is regular.

Proof:
Let RE; = (0+1)*0 and RE; = 01(0+1)*
Here, L; = {0, 00, 10, 000, 010, b (Set of strings ending in 0)

29

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

and L, =4{01,010,011,..... ¥ (Set of strings beginning with 01)
Then, L;L,=<{001,0010,0011,0001,00010,00011,1001,10010,............. >

Set of strings containing 001 as a substring which can be represented by an RE:
(0+1)*001(0+1)*

Hence, proved.

Identities Related to Regular Expressions

Given R, P, L, Q as regular expressions, the following identities hold:

1. @*=¢

2. g =c¢

3. R+ = RR* = R*R

4, R*R* = R*

5. (R*)* = R*

6. RR* = R*R

7. (PQ)*P =P(QP)*

8. (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)*
9. R+ @ =@ + R =R (The identity for union)
10. Re=eR =R (The identity for concatenation)
11. gL=10 =0 (The annihilator for concatenation)
12. R+ R =R (Idempotent law)
13. L(M + N) =LM + LN (Left distributive law)
14. (M +N)L=LM + LN (Right distributive law)

15. € + RR* = € + R¥R = R*

Arden’s Theorem

In order to find out a regular expression of a Finite Automaton, we use Arden’s
Theorem along with the properties of regular expressions.

30

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Statement:
Let P and Q be two regular expressions.

If P does not contain null string, then R = Q + RP has a unique solution
that is R = QP*

Proof:
R=Q+ (Q + RP)P [After putting the value R = Q + RP]
= Q + QP + RPP

When we put the value of R recursively again and again, we get the following
equation:

R=Q+ QP + QP? + QP.....

R=Q(e+P+P>+P+..)

R = QP* [As P* represents (e + P + P2+ P> +)]

Hence, proved.

Assumptions for Applying Arden’s Theorem:
1. The transition diagram must not have NULL transitions

2. It must have only one initial state

Method

Step 1: Create equations as the following form for all the states of the DFA
having n states with initial state q.

qi = C|1R11 + C|2R21 + ... + C]anl + €
g2 = qiR12 + q2R22 + ... + gnRn2

gn = quln + q2R2n + ...+ CIann

Rij represents the set of labels of edges from q; to q;, if no such edge exists, then
Ri=0

31

' tutorialspoint

SIMPLYEASYLEARMING

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQ0gIoADAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2F%25C3%2598_%2528disambiguation%2529&ei=I-sKVcriCIyJuATAooHIDg&usg=AFQjCNGI_swol2c4d5nC1BFrV0v3KV6PCw&bvm=bv.88528373,d.c2E

Automata Theory

Step 2: Solve these equations to get the equation for the final state in
terms of Rj;

Problem

Construct a regular expression corresponding to the automata given below:

Finite automata
Solution
Here the initial state is q2 and the final state is qi.
The equations for the three states q1, g2, and g3 are as follows:

gq: = qia + gza + € (e move is because gl is the initial state0
g2 = qib + gq2b + gsb
g3 = (ea

Now, we will solve these three equations:

g2 = qib + g2b + gs3b
= qib + q2b + (g2a)b (Substituting value of gs)
= qib + g2(b + ab)

= qib (b + ab)* (Applying Arden’s Theorem)

i = qia + Qgza + €

=qia + qraa + € (Substituting value of qg3)
= 1@ + qib(b + ab*)aa + € (Substituting value of q>)
= qi(a + b(b + ab)*aa) + €

32

' tutorialspoint

SIMPLYEASYLEARMING

(a + b(

Hence, the regular

Problem

€ (a+ b(b + ab)*aa)*

b + ab)*aa)*

expression is (a + b(b + ab)*aa)*.

Automata Theory

Construct a regular expression corresponding to the automata given below:

Solution:

Finite automata

Here the initial state is qi: and the final state is g2

Now we write down the equations:

q: =qi0 + €
g2 =q:1 + ¢

20

gs=q21 + g30 + gs1

Now, we will solve

these three equations:

gl = e0* [As, R = R]

So, ql=0%

g2 = 0*1 + g20
So, g2 = 0*1(0)* [By Arden’s theorem]

Hence, the regular

SIMPLYESA

expression is 0*10%*.

\ tutorialspoint

SYLEARMING

33

Automata Theory

Construction of an FAfrom an RE

We can use Thompson's Construction to find out a Finite Automaton from a
Regular Expression. We will reduce the regular expression into smallest regular
expressions and converting these to NFA and finally to DFA.

Some basic RA expressions are the following:

Case 1: For a regular expression ‘a’, we can construct the following FA:

Finite automata for RE = a

Case 2: For a regular expression ‘ab’, we can construct the following FA:

Finite automata for RE = ab

Case 3: For a regular expression (a+b), we can construct the following FA:

a

Finite automata for RE= (a+b)

Case 4: For a regular expression (a+b)*, we can construct the following FA:

34

\ tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

a,b

Finite automata for RE= (a+b)*

Method:

Step 1 Construct an NFA with Null moves from the given regular expression.

Step 2 Remove Null transition from the NFA and convert it into its equivalent
DFA.

Problem
Convert the following RA into its equivalent DFA: 1 (0 + 1)* 0

Solution:

We will concatenate three expressions "1", "(0 + 1)*" and "0"

0,1

NDFA with NULL transition for RA: 1 (0 + 1)*0

Now we will remove the € transitions. After we remove the € transitions from the
NDFA, we get the following:

NDFA without NULL transition for RA: 1 (0 + 1)* 0

It is an NDFA corresponding to the RE: 1 (0 + 1)* 0. If you want to convert it
into a DFA, simply apply the method of converting NDFA to DFA discussed in
Chapter 1.

35

' tutorialspoint

SIMPLYEASYLEARMING

Finite Automata with Null Moves (NFA-g)

Automata Theory

A Finite Automaton with null moves (FA-g) does transit not only after giving
input from the alphabet set but also without any input symbol. This transition
without input is called a null move.

An NFA-€ is represented formally by a 5-tuple (Q, £, 8, qo, F), consisting of

Q : a finite set of states

Z : a finite set of input symbols
3 : a transition function d : Q x (= U {&}) — 29

Qo : an initial state qo = Q

F: a set of final state/states of Q (FSQ).

GG

1

Finite automata with Null Moves

The above (FA-g) accepts a string set: {0, 1, 01}

Removal of Null Moves from Finite Automata

If in an NDFA, there is e-move between vertex X to vertex Y, we can remove it
using the following steps:

1.

2
3.
4

Find all the outgoing edges from Y.

Copy all these edges starting from X without changing the edge labels.

If X is an initial state, make Y also an initial state.

If Y is a final state, make X also a final state.

Problem

Convert the following NFA-€ to NFA without Null move.

SIMPLYESA

' tutorialspoint

F¥LEARMINIG

36

http://en.wikipedia.org/wiki/N-tuple
http://en.wikipedia.org/wiki/Sigma
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Input_symbol
http://en.wikipedia.org/wiki/Function_%28mathematics%29

Automata Theory

1

Finite automata with Null Moves
Solution
Step 1:
Here the € transition is between q1 and q2, so let q1is X and gris Y.

Here the outgoing edges from gr is to gr for inputs 0 and 1.
Step 2:

Now we will Copy all these edges from q: without changing the edges from
gr and get the following FA:

0 [\
q1

—l—

1

NDFA after step 2
Step 3:
Here qi is an initial state, so we make qr also an initial state.

So the FA becomes -

37

\ tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

1

NDFA after Step 3

Step 4:
Here qr is a final state, so we make qi also a final state.

So the FA becomes -

1

Final NDFA without NULL moves

Pumping Lemma for Regular Languages

Theorem

Let L be a regular language. Then there exists a constant ‘¢’ such that for
every string w in L:

lw| 2 c

We can break w into three strings, w = xyz, such that:
L.yl >0
2. |xy| =£c

3. For all k = 0, the string xy*z is also in L.

38

\ tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Applications of Pumping Lemma

Pumping Lemma is to be applied to show that certain languages are not regular.
It should never be used to show a language is regular.

1. If L is regular, it satisfies Pumping Lemma.

2. If L is non-regular, it does not satisfy Pumping Lemma.

Method to prove that a language L is not regular:

1. At first, we have to assume that L is regular.

2. So, the pumping lemma should hold for L.

3. Use the pumping lemma to obtain a contradiction:
(a) Select w such that |w| 2 ¢
(b) Selectysuchthat |y|] =1
(c) Select x such that |xy| = ¢
(d) Assign the remaining string to z.

(e) Select k such that the resulting string is not in L.

Hence L is not regular.

Problem
Prove that L = {a’b’ | i = 0} is not regular.
Solution:

1. At first, we assume that L is regular and n is the number of states.
2. Let w = a"b". Thus |[w| = 2n = n.
3. By pumping lemma, let w = xyz, where |xy|< n.

4, letx=a°, y=a% andz =ab", wherep+q+r=np+0,q+0,r=+0.
Thus |y|# O

5. Let k = 2. Then xy?z = a”a®a’b".
6. Numberofas=(p+2g+r)=(p+q+r)+qg=n+q
7. Hence, xy?z = a"*9b". Since q # 0, xy?z is not of the form a"b".

8. Thus, xy?z is not in L. Hence L is not regular.

39

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Complement of a DFA

If (Q, Z, 3, qo, F) be a DFA that accepts a language L, then the complement of
the DFA can be obtained by swapping its accepting states with its non-accepting
states and vice versa.

We will take an example and elaborate this below:

DFA accepting language L
This DFA accepts the language
L={{a,aa, aaa, >
over the alphabet
> ={a, b}
So, RE = at.

Now we will swap its accepting states with its non-accepting states and vice
versa and will get the following:

DFA accepting complement of language L

40

\ tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

This DFA accepts the language

L = {g, b, ab ,bb,ba, s
over the alphabet

> ={a, b}

Note: If we want to complement an NFA, we have to first convert it to DFA and
then have to swap states as in the previous method.

41

\ tutorialspoint

SIMPLYEASYLEARMING

4. CONTEXT-FREE GRAMMARS

Context-Free Grammar

Definition: A context-free grammar (CFG) consisting of a finite set of grammar
rules is a quadruple (N, T, P, S) where

e N is a set of non-terminal symbols.
e Tis a set of terminals where N N T = NULL.

e P is a set of rules, P: N - (N U T)*, i.e., the left-hand side of the
production rule P does have any right context or left context.

e S is the start symbol.

Example
1. The grammar ({A}, {a, b, c}, P, A),P: A — aA, A— abc.
2. The grammar ({S, a, b}, {a, b}, P, S),P: S—>aSa,S - bSb, S —» €
3. The grammar ({S, F}, {0, 1}, P, S),P: S—->00S | 11F, F— 00F | €

Generation of Derivation Tree

A derivation tree or parse tree is an ordered rooted tree that graphically
represents the semantic information a string derived from a context-free
grammar.

Representation Technique:
1. Root vertex: Must be labeled by the start symbol.
2. Vertex: Labeled by a non-terminal symbol.

3. Leaves: Labeled by a terminal symbol or «.

If S — xix2 Xn is @ production rule in a CFG, then the parse tree / derivation
tree will be as follows:

42

o

@' tutorialspoint

SIMPLYEASYLEARNING

http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar

Automata Theory

There are two different approaches to draw a derivation tree:
1. Top-down Approach:
(a) Starts with the starting symbol S
(b) Goes down to tree leaves using productions
2. Bottom-up Approach:
(a) Starts from tree leaves

(b) Proceeds upward to the root which is the starting symbol S

Derivation or Yield of a Tree

The derivation or the yield of a parse tree is the final string obtained by
concatenating the labels of the leaves of the tree from left to right, ignoring
the Nulls. However, if all the leaves are Null, derivation is Null.

Example
Let a CFG {N,T,P,S} be

N = {S}, T = {a, b}, Starting symbol =S,P=S >SS | aSb | €
One derivation from the above CFG is “abaabb”

S - SS — aSbS —abS — abaSb — abaaSbb — abaabb

43

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Sentential Form and Partial Derivation Tree

A partial derivation tree is a sub-tree of a derivation tree/parse tree such that
either all of its children are in the sub-tree or none of them are in the sub-tree.

Example

If in any CFG the productions are:

S — AB,

A — aaA | g,

B —Bb| €

the partial derivation tree can be the following:

If a partial derivation tree contains the root S, it is called a sentential form.
The above sub-tree is also in sentential form.

SIMPLYESA

\ tutorialspoint

F¥LEARMINIG

44

Automata Theory

Leftmost and Rightmost Derivation of a String

e Leftmost derivation - A leftmost derivation is obtained by applying
production to the leftmost variable in each step.

¢ Rightmost derivation - A rightmost derivation is obtained by applying
production to the rightmost variable in each step.

Example
Let any set of production rules in a CFG be

X — X+X | X*X |X]| a

over an alphabet {a}.

The leftmost derivation for the string "a+a*a" may be:
X — X+X— a+X— a+ X*X —a+a*X— a+a*a

The stepwise derivation of the above string is shown as below:

45

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Step 1: S

tep 2:

?

Step 3:

° Step 4:
()

OO0
H OO

Step 5:

The rightmost derivation for the above string "a+a*a" may be:

X — X*X— X*a —» X+X*a -X+a*a— a+a*a

46

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

The stepwise derivation of the above string is shown as below:

Step 1 Step 2:

Ambiguity in Context-Free Grammars

If a context free grammar G has more than one derivation tree for some string
w € L(G), it is called an ambiguous grammar. There exist multiple right-most
or left-most derivations for some string generated from that grammar.

Problem

Check whether the grammar G with production rules:

X — X4X | X*X |X] a
47

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

is ambiguous or not.
Solution

Let's find out the derivation tree for the string "a+a*a". It has two leftmost
derivations.

Derivation 1: X - X+X— a +X— a+ X*X —a+a*X— a+a*a

Parse tree 1:

Derivation 2: X - X*X->X+X*¥X— a+ X*X —-a+a*X— a+a*a

Parse tree 2:

Since there are two parse trees for a single string "a+a*a", the grammar G is
ambiguous.
48

tutorialspoint

PLYEASYLEARNING

Automata Theory

Closure Property of CFL

Context-free languages are closed under:

e Union
e Concatenation

e Kleene Star operation

Union

Let L; and L, be two context free languages. Then L; U L; is also context free.
Example:

Let Ly = { a"b", n>0}. Corresponding grammar G; will have P: S1 — aAb|ab
Let L, = { ¢c™d™, n=0}. Corresponding grammar G, will have P: S2 — cBb| €
Unionof Liand L, L=Liu L ={ab"}u{cd™}

The corresponding grammar G will have the additional production S — S1 | S2

Concatenation

If L1 and L, are context free languages, then L:L; is also context free.
Example:
Union of the languages L; and L, L = LiL, = { a"b"c™d™ }

The corresponding grammar G will have the additional production S — S1 S2

Kleene Star

If L is a context free language, then L* is also context free.

Example:

Let L = {a"b", n=0}. Corresponding grammar G will have P: S — aAb| €
Kleene Star L; = { a"b" }*

The corresponding grammar G; will have additional productions S; — SS1 | €

49

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Context-free languages are not closed under:

e Intersection : If L1 and L2 are context free languages, then L1 n L2 is
not necessarily context free.

e Intersection with Regular Language : If L1 is a regular language and
L2 is a context free language, then L1 n L2 is a context free language.

¢ Complement : If L1 is a context free language, then L1’ may not be
context free.

Simplification of CFGs

In a CFG, it may happen that all the production rules and symbols are not
needed for the derivation of strings. Besides, there may be some null
productions and unit productions. Elimination of these productions and symbols
is called simplification of CFGs. Simplification essentially comprises of the
following steps:

e Reduction of CFG
e Removal of Unit Productions

e Removal of Null Productions

Reduction of CFG

CFGs are reduced in two phases:

Phase 1: Derivation of an equivalent grammar, G’, from the CFG, G, such that
each variable derives some terminal string.

Derivation Procedure:

Step 1: Include all symbols, W;, that derive some terminal and
initialize i=1.

Step 2: Include all symbols, Wis1, that derive Wi.

Step 3: Increment i and repeat Step 2, until Wi+1 = Wi.

Step 4: Include all production rules that have Wi in it.

Phase 2: Derivation of an equivalent grammar, G"”, from the CFG, G’, such that
each symbol appears in a sentential form.

Derivation Procedure:

Step 1: Include the start symbol in Y1 and initialize i = 1.
50

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

Step 2: Include all symbols, Yi+1, that can be derived from Yi and
include all production rules that have been applied.
Step 3: Increment i and repeat Step 2, until Yi+1 = Y.
Problem

Find a reduced grammar equivalent to the grammar G, having production rules,
P.S>AC|B,A—>a, C—o>c|BC,E>aA|e

Solution

Phase 1:
T ={a,c, e}
Wi ={AC E}fromrulesA >a, C—>cand E - aA
Wo={A CE}U{S}fromruleS— AC
Ws={AC ES}U

Since W; = W3, we can derive G’ as:

G'={{ACES}{ace} P {S}}

whereP: S 5 AC,A—>a, C>c,E—>aA|e

Phase 2:
Yi:={S}
Y2={S,A C}fromruleS - AC
Ys3={S,A C,a c}fromrulesA—»>aand C—c
Ya={S,A C,a c}
Since Y3 = Y4, we can derive G” as:
G"={{AC S} {a c} P, {S}}

whereP: S - AC,A—a, C—>cC

Removal of Unit productions

Any production rule in the form A — B where A, B € Non-terminal is called unit
production.

51

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Removal Procedure:

Step 1: To remove A—B, add production A—x to the grammar rule whenever
B—Xx occurs in the grammar. [x € Terminal, x can be Null]

Step 2: Delete A—B from the grammar.

Step 3: Repeat from step 1 until all unit productions are removed.

Problem

Remove unit production from the following:

S—>XY,X—aY—>Z|bZ—>MM-N,N—a

Solution:
There are 3 unit productions in the grammar:

Y—Z, Z—M, and M—N

At first, we will remove M — N.
As N — a, weadd M — a, and M — N is removed.
The production set becomes

S—XY,X—>aY—>Z|b,Z—>MM—a, N—a

Now we will remove Z — M.
As M — a, we add Z— a, and Z — M is removed.
The production set becomes

S—>XY,X—aY—Z|b Z—aM—a N—a

Now we will remove Y — Z.

AsZ — a,weadd Y— a,and Y — Z is removed.

The production set becomes
S—>XY,X—aY—al|b,Z—aM—a N—a

Now Z, M, and N are unreachable, hence we can remove those.

The final CFG is unit production free:
52

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

S — XY, X —a, Y—al|b

Removal of Null Productions

In a CFG, a non-terminal symbol ‘A’ is a nullable variable if there is a production
A — c or there is a derivation that starts at A and finally ends up with

€ A i — €

Removal Procedure:

Stepl Find out nullable non-terminal variables which derive e.

Step2 For each production A — a, construct all productions A — x where X is
obtained from ‘a’ by removing one or multiple non-terminals from Step
1.

Step3 Combine the original productions with the result of step 2 and remove
c-productions.

Problem
Remove null production from the following:

S—»ASA|aB|b,A—-B,B—-b]e

Solution:

There are two nullable variables: A and B

At first, we will remove B — e.
After removing B — ¢, the production set becomes:

S—>ASA |aB | b | a, A—>B|b]e B—-b

Now we will remove A — e.
After removing A — ¢, the production set becomes:
S>ASA|aB|bla|SA|AS|S, A—-B|lb, B-b

This is the final production set without null transition.

53

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Chomsky Normal Form

A CFG is in Chomsky Normal Form if the Productions are in the following forms:

e A2
e A - BC
e S ¢

where A, B, and C are non-terminals and a is terminal.

Algorithm to Convert into Chomsky Normal Form:

Step 1 If the start symbol S occurs on some right side, create a new start
symbol S and a new production S" — S.

Step 2 Remove Null productions. (Using the Null production removal algorithm
discussed earlier)

Step 3 Remove unit productions. (Using the Unit production removal
algorithm discussed earlier)

Step 4 Replace each production A — Bi1...Bnwhere n > 2 with A — B1C where
C — B2 ...Bn. Repeat this step for all productions having two or more
symbols in the right side.

Step 5 If the right side of any production is in the form A— aB where a is a
terminal and A, B are non-terminal, then the production is replaced by
A— XB and X— a. Repeat this step for every production which is in the
form A— aB.

Problem:

Convert the following CFG into CNF

S— ASA | aB, A—-B|S, B—-b]le

Solution:

(1) Since S appears in R.H.S, we add a new state So and So—S is added to the
production set and it becomes:

So—S, S— ASA | aB, A—-B]|S, B—-b]e

(2) Now we will remove the null productions:

B — ¢ and A — e

54

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

After removing B — ¢, the production set becomes:
So—S, SoASA|aB|a,A—-B|S|¢B—b
After removing A — ¢, the production set becomes:

So—S,S—>ASA|aB|a|AS|SA|S,A—-B|S,B—-b

(3) Now we will remove the unit productions.
After removing S— S, the production set becomes:
So—S,S—>ASA|aB|a|AS|SA,A—-B|S,B—b
After removing So— S, the production set becomes:
So— ASA | aB | a| AS | SA, S—>ASA|aB|a|AS|SA
A—-B|S, B—-b
After removing A— B, the production set becomes:
So—~ASA|aB|a|AS|SA, S->ASA|aB|a]|AS | SA
A—->S|b
B—b
After removing A— S, the production set becomes:
So— ASA | aB | a| AS | SA, S—>ASA|aB|a|AS | SA
A—-b|ASA|aB|a|AS|SA, B—-b

(4) Now we will find out more than two variables in the R.H.S
Here, So— ASA, S — ASA, A— ASA violates two Non-terminals in R.H.S.

Hence we will apply step 4 and step 5 to get the following final production set
which is in CNF:

So— AX | aB | a | AS | SA
S— AX | aB | a| AS | SA

A b |AX | aB|a|AS|SA
B—b

X— SA

55

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

(5) We have to change the productions So— aB, S— aB, A— aB
And the final production set becomes:

So— AX | YB|a|AS | SA

S>AX|YB|a]|AS|SA

A—-Db|AX|YB|a]|]AS|SA

B—-b

X— SA

Y - a

Greibach Normal Form

A CFG is in Greibach Normal Form if the Productions are in the following forms:
A—-b
A — bD;...Ds
S —>e¢

where A, Dy,....,Dn are non-terminals and b is a terminal.

Algorithm to Convert a CFG into Greibach Normal Form:

Step 1 If the start symbol S occurs on some right side, create a new start
symbol S’ and a new production S’ — S.

Step 2 Remove Null productions. (Using the Null production removal
algorithm discussed earlier)

Step 3 Remove unit productions. (Using the Unit production removal
algorithm discussed earlier)

Step 4 Remove all direct and indirect left-recursion.

Step 5 Do proper substitutions of productions to convert it into the proper
form of GNF.

Problem:

Convert the following CFG into CNF
S XY | Xn|p

X—>mX|m

Y—>Xn|o
56

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Solution:

Here, S does not appear on the right side of any production and there are no
unit or null productions in the production rule set. So, we can skip Step 1 to
Step 3.

Step 4:

Now after replacing
XinS—-XY|Xo|p

with
mX | m

we obtain
S—>mXY | mY | mXo| mo]|p.

And after replacing
XinY=Xn|o

with the right side of
X—->mX|m

we obtain
Y— mXn | mn | o.

Two new productions O— o0 and P — p are added to the production set and then
we came to the final GNF as the following:

S->-mXY|mY| mXC|mC|p
X— mX | m
Y->mXD | mD | o

O—-o

P—-p

Left and Right Recursive Grammars

In a context-free grammar G, if there is a production in the form X— Xa where
X is a non-terminal and ‘a’ is a string of terminals, it is called a left recursive
production. The grammar having a left recursive production is called a left
recursive grammar.

57

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

And if in a context-free grammar G, if there is a production is in the form X— aX
where X is a non-terminal and ‘a’ is a string of terminals, it is called a right
recursive production. The grammar having a right recursive production is
called a right recursive grammar.

Pumping Lemma for Context-Free Grammars

Lemma:

If L is a context-free language, there is a pumping length p such that
any string w € L of length = p can be written as w = uvxyz, where
vy # g, |vxy| < p, and for all i 2 0, uvixy'z = L.

Applications of Pumping Lemma

Pumping lemma is used to check whether a grammar is context free or not. Let
us take an example and show how it is checked.

Problem:

Find out whether the language L= {x"y"z" | n =21} is context free or not.

Solution:

Let L is context free. Then, L must satisfy pumping lemma.

At first, choose a number n of the pumping lemma. Then, take z as 0"1"2",
Break z into uvwxy, where

lvwx|] = n and vx # €.

Hence vwx cannot involve both 0s and 2s, since the last 0 and the first 2 are at
least (n+1) positions apart. There are two cases:

Case 1: vwx has no 2s. Then vx has only Os and 1s. Then uwy, which would
have to be in L, has n 2s, but fewer than n Os or 1s.

Case 2: vwx has no 0Os.
Here contradiction occurs.

Hence, L is not a context-free language.

58

' tutorialspoint

LYEASYLEARMNINEG

5. PUSHDOWN AUTOMATA

Basic Structure of PDA

A pushdown automaton is a way to implement a context-free grammar in a
similar way we design DFA for a regular grammar. A DFA can remember a finite
amount of information, but a PDA can remember an infinite amount of
information.

Basically a pushdown automaton is:
"Finite state machine" + "a stack"
A pushdown automaton has three components:
e an input tape,
e a control unit, and

e a stack with infinite size.

The stack head scans the top symbol of the stack.
A stack does two operations:

e Push: a new symbol is added at the top.
e Pop: the top symbol is read and removed.

A PDA may or may not read an input symbol, but it has to read the top of the
stack in every transition.

Takes
input Finite control
—» it - » Accept or
uni reject
A
Push or Pop
A
Input tape
Stack

59

o

@' tutorialspoint

SIMPLYEASYLEARNING

A PDA can be formally described as a 7-tuple (Q, 2, S, 0, qo, I, F):

Automata Theory

Q is the finite number of states

Z is input alphabet

S is stack symbols

O is the transition function: Q x (Zu{e}) x S x Q x S*
qo is the initial state (qo € Q)

I is the initial stack top symbol (I € S)

F is a set of accepting states (F € Q)

The following diagram shows a transition in a PDA from a state g: to state q»,
labeled as a,b — c :

Input Stack top Push

Symbol Symbol Symbol

. a,b->c .

This means at state qa, if we encounter an input string ‘a’ and top symbol of the

stack is ‘'b’, then we pop 'b’, push ‘¢’ on top of the stack and move to state qa.

Terminologies Related to PDA

Instantaneous Description

The instantaneous description (ID) of a PDA is represented by a triplet (q, w, s)

where

q is the state

W is unconsumed input

s is the stack contents

' tutorialspoint

SIMPLYEASYLEARMING

60

Automata Theory

Turnstile Notation

The "turnstile" notation is used for connecting pairs of ID's that represent one or
many moves of a PDA. The process of transition is denoted by the turnstile
symbol "F".

Consider a PDA (Q, 2, S, 9, qo, I, F). A transition can be mathematically
represented by the following turnstile notation:

(p, aw, TB) + (g, w, ob)

This implies that while taking a transition from state p to state q, the input
symbol ‘a’ is consumed, and the top of the stack ‘T’ is replaced by a new string

\ 4

o .

Note: If we want zero or more moves of a PDA, we have to use the symbol (-*)
for it.

Acceptance by PDA

There are two different ways to define PDA acceptability.

Final State Acceptability

In final state acceptability, a PDA accepts a string when, after reading the entire
string, the PDA is in a final state. From the starting state, we can make moves
that end up in a final state with any stack values. The stack values are irrelevant
as long as we end up in a final state.

For a PDA (Q, Z, S, 9, qo, I, F), the language accepted by the set of final states F
is:

L(PDA) = {W | (qOI w, I) B (ql & X)I qe F}

for any input stack string x.

Empty Stack Acceptability

Here a PDA accepts a string when, after reading the entire string, the PDA has
emptied its stack.

Fora PDA (Q, Z, S, 9, qo, I, F), the language accepted by the empty stack is:
L(PDA) = {W | (qOI W, I) ¥ (ql g E)l gqe€ Q}

61

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Example
Construct a PDA that accepts L= {O0"1" | n = 0}

Solution

PDA for L= {0"1" | n=20}
This language accepts L = {g, 01, 0011, 000111, ..coovvviiriiinniinnnnnnnnns >
Here, in this example, the number of ‘a’ and ‘b’ have to be same.

e Initially we put a special symbol ‘'$’ into the empty stack.

e Then at state q2, if we encounter input 0 and top is Null, we push 0 into
stack. This may iterate. And if we encounter input 1 and top is 0, we pop
this 0.

e Then at state qs, if we encounter input 1 and top is 0, we pop this 0. This
may also iterate. And if we encounter input 1 and top is 0, we pop the top
element.

e If the special symbol ‘$’ is encountered at top of the stack, it is popped
out and it finally goes to the accepting state qa.

Example
Construct a PDA that accepts L= { wwR | w = (a+b)* }

Solution

PDA for L= {ww® | w = (a+b)*}

Initially we put a special symbol '$’ into the empty stack. At state qz, the w is
being read. In state qs, each 0 or 1 is popped when it matches the input. If any

62

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

other input is given, the PDA will go to a dead state. When we reach that special
symbol '$’, we go to the accepting state qa.

Correspondence between PDA and CFL

If a grammar G is context-free, we can build an equivalent nondeterministic PDA
which accepts the language that is produced by the context-free grammar G. A
parser can be built for the grammar G.

Also, if P is a pushdown automaton, an equivalent context-free grammar G can
be constructed where

L(G) = L(P)
In the next two topics, we will discuss how to convert from PDA to CFG and vice

Versa.

Algorithm to find PDA corresponding to a given CFG
Input: A CFG, G= (V, T, P, S)
Output: Equivalent PDA, P=(Q, Z, S, 3, qo, I, F)

Step 1 Convert the productions of the CFG into GNF.

Step 2 The PDA will have only one state {q}.

Step 3 The start symbol of CFG will be the start symbol in the PDA.

Step 4 All non-terminals of the CFG will be the stack symbols of the PDA
and all the terminals of the CFG will be the input symbols of the
PDA.

Step 5 For each production in the form A— aX where a is terminal and A,
X are combination of terminal and non-terminals, make a transition
6 (q, a, A).

Problem

Construct a PDA from the following CFG.
G = ({S, X}, {a, b}, P, S)
where the productions are:

S—> XS |e, A—aXb | Ab | ab

63

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

Solution
Let the equivalent PDA,
P = ({q}, {a, b}, {a, b, X, S}, 6, q, S)

where 9:

0(q,&,5) =4(q, XS),(a, &)}

0(q, ¢ , X) = {(q, aXb), (q, Xb), (q, ab)}
0(q,a,a) =4(q,¢)}
0(q,1,1)=A{(q,¢)}

Algorithm to find CFG corresponding to a given PDA
Input: A CFG, G= (V, T, P, S)

Output: Equivalent PDA, P= (Q, 2, S, 9, qo, I, F) such that the non-
terminals of the grammar G will be {Xwx | w,x € Q} and the start
state will be Aqo,r.

Step 1 For every w, x,y,z€e Q, meSanda,beZ, if d (w, a, €) contains
(y, m) and (z, b, m) contains (X, ¢), add the production rule Xux — a
Xyzb in grammar G.

Step 2 For every w, X, y, z € Q, add the production rule Xwx — XuwyXyx in
grammar G.

Step 3 For w € Q, add the production rule Xww— ¢ in grammar G.

Parsing and PDA

Parsing is used to derive a string using the production rules of a grammar. It is
used to check the acceptability of a string. Compiler is used to check whether or
not a string is syntactically correct. A parser takes the inputs and builds a parse
tree.

A parser can be of two types:

e Top-Down Parser: Top-down parsing starts from the top with the start-
symbol and derives a string using a parse tree.

e Bottom-Up Parser: Bottom-up parsing starts from the bottom with the
string and comes to the start symbol using a parse tree.

64

' tutorialspoint

SIMPLYEASYLEARMING

http://en.wikipedia.org/wiki/Parse_tree
http://en.wikipedia.org/wiki/Parse_tree

Automata Theory

Design of Top-Down Parser
For top-down parsing, a PDA has the following four types of transitions:

e Pop the non-terminal on the left hand side of the production at the top of
the stack and push its right-hand side string.

e If the top symbol of the stack matches with the input symbol being read,
pop it.

e Push the start symbol 'S’ into the stack.

e If the input string is fully read and the stack is empty, go to the final state
\FI-

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with
the following production rules:

P: S S+X|X, X — X*Y | Y, Y > (S) | id

Solution
If the PDA is (Q, Z, S, 9, qo, I, F), then the top-down parsing is:
(x+y*z, I) H(X +y*z, SI) + (X+y*z, S+XI) H(X+y*z, X+XI)

F(X+y*z, Y+X I) H(X+y*z, Xx+XI) F(+y*z, +XI) + (y*z, XI)

F(y*z, X*YI) +(y*z, y*YI) +(*z,*YI) (2, YI) +(z, zI) (g, I)

Design of a Bottom-Up Parser
For bottom-up parsing, a PDA has the following four types of transitions:

e Push the current input symbol into the stack.

¢ Replace the right-hand side of a production at the top of the stack with its
left-hand side.

o If the top of the stack element matches with the current input symbol,
pop it.

e If the input string is fully read and only if the start symbol 'S’ remains in
the stack, pop it and go to the final state ‘F'.

65

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Example

Design a top-down parser for the expression "x+y*z" for the grammar G with
the following production rules:

P: S— S+X|X, X — X*Y | Y, Y - (S) | id

Solution
If the PDAis (Q, Z, S, 0O, qo, I, F), then the bottom-up parsing is:
(x+y*z, I) + (+y*z, XI) + (+y*z, YI) + (+y*z, XI) + (+y*z, SI)

- (y*z, +SI) (*z, y+SI) F (*¥z, Y+SI) F (*¥z, X+SI) + (z, *X+SI)

F (g, Z¥X+SI) + (g, Y*X+SI) + (g, X+SI) + (g, SI)

66

' tutorialspoint

SIMPLYEASYLEARMING

6. TURING MACHINE

A Turing Machine is an accepting device which accepts the languages
(recursively enumerable set) generated by type 0 grammars. It was invented in
1936 by Alan Turing.

Definition

A Turing Machine (TM) is a mathematical model which consists of an infinite
length tape divided into cells on which input is given. It consists of a head which
reads the input tape. A state register stores the state of the Turing machine.
After reading an input symbol, it is replaced with another symbol, its internal
state is changed, and it moves from one cell to the right or left. If the TM
reaches the final state, the input string is accepted, otherwise rejected.

A TM can be formally described as a 7-tuple (Q, X, Z, 3, qo, B, F) where:

e Qs a finite set of states

e X s the tape alphabet

e X is the input alphabet

e Jis a transition function; & : Q x X — Q x X x {Left_shift, Right_shift}.
e (o is the initial state

e B is the blank symbol

e F is the set of final states

Comparison with the previous automaton:

The following table shows a comparison of how a Turing machine differs from
Finite Automaton and Pushdown Automaton.

Machine Stack Data Structure Deterministic?
Finite Automaton N.A Yes
Pushdown Automaton Last In First Out(LIFO) No
Turing Machine Infinite tape Yes

67

o

@' tutorialspoint

SIMPLYEASYLEARNING

Example of Turing machine:

Turing machine M = (Q, X, Z, §, qo, B, F) with

e X=A{a b}
. Z={1}
e do= {qo}
e B = blank symbol
e F=Aar}
e Jis given by:
Tape alphabet Present State Present State Present State
symbol ‘qo’ ‘q1’ ‘q2’
a 1RQ: 1Lqo 1Lgr
b 1Lg2 1Rq1 1Rgr

Q = {qo, 91, 92, g¢}

Automata Theory

Here the transition 1Rq: implies that the write symbol is 1, the tape moves right,
and the next state is gi. Similarly, the transition 1Lqg, implies that the write
symbol is 1, the tape moves left, and the next state is Q.

Accepted Language and Decided Language

A TM accepts a language if it enters into a final state for any input string w. A
language is recursively enumerable (generated by Type-O grammar) if it is
accepted by a Turing machine.

A TM decides a language if it accepts it and enters into a rejecting state for any
input not in the language. A language is recursive if it is decided by a Turing
machine.

There may be some cases where a TM does not stop. Such TM accepts the
language, but it does not decide it.

Designing a Turing Machine

The basic guidelines of designing a Turing machine have been explained below
with the help of a couple of examples.

68

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

Example 1
Design a TM to recognize all strings consisting of an odd number of a's.

Solution
The Turing machine M can be constructed by the following moves:

e Let qi1 be the initial state.
e IfMisin qi; on scanning a, it enters the state q2 and writes B (blank).
e IfMisin q2; on scanning qa, it enters the state qi1 and writes B (blank).

e From the above moves, we can see that M enters the state q if it scans
an even number of a’s, and it enters the state q» if it scans an odd
number of a’s. Hence q2 is the only accepting state.

Hence,

M= {{qll qz}l {1}1 {11 B}I 8, qy, B, {qZ}}

where & is given by:

Tape alphabet

Present State ‘q1’ | Present State ‘q>’
symbol

a BRq2 BRq:

Example 2

Design a Turing Machine that reads a string representing a binary number and
erases all leading 0’s in the string. However, if the string comprises of only Q’s, it
keeps one 0.

Solution

Let us assume that the input string is terminated by a blank symbol, B, at each
end of the string.

The Turing Machine, M, can be constructed by the following moves:

» Let qo be the initial state.

= If Mis in qo, On reading 0, it moves right, enters the state qi1 and erases
0. On reading 1, it enters the state q2 and moves right.

= If Misin qi, on reading O, it moves right and erases 0, i.e., it replaces 0’s
by B’s. On reaching the leftmost 1, it enters q2 and moves right. If it

69

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

reaches B, i.e., the string comprises of only 0’s, it moves left and enters
the state qs.

= If Mis in q2, on reading either 0 or 1, it moves right. On reaching B, it
moves left and enters the state q4. This validates that the string
comprises only of O’s and 1’'s.

= IfMisin qs, it replaces B by 0, moves left and reaches the final state qs.

= If M is in qs4, On reading either 0 or 1, it moves left. On reaching the
beginning of the string, i.e., when it reads B, it reaches the final state qs.

Hence,

M= {{qol qi1, 92, g3, a4, qf}l {0111 B}I {11 B}l 5, Jo, BI {qf}}

where & is given by:

aI::aPSet Prese‘nt’ Prese‘nt’ Prese‘nt’ Prese‘nt’ Prese‘nt’
il State ‘qo State ‘q: State 'q2 State ‘g3 State 'q4
0 BRq1 BRq: ORQ2 - OLga4
1 1Rq2 1RQ2 1RQ2 - 1Lg4
B BRQq1 BLgs BLQ4 OLgr BRgr

Multi-tape Turing Machine

Multi-tape Turing Machines have multiple tapes where each tape is accessed with
a separate head. Each head can move independently of the other heads. Initially
the input is on tape 1 and others are blank. At first, the first tape is occupied by
the input and the other tapes are kept blank. Next, the machine reads
consecutive symbols under its heads and the TM prints a symbol on each tape
and moves its heads.

70

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

En

En \

x
En \

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, 9,
qo, F) where:

e Q is a finite set of states

e X is the tape alphabet

e B is the blank symbol

e O is a relation on states and symbols where
0: Q xXk »Qx (Xx {Left_shift, Right_shift, No_shift })k
where there is k number of tapes

e (o is the initial state

e F is the set of final states

Note: Every Multi-tape Turing machine has an equivalent single-tape Turing
machine.

Multi-track Turing Machine

Multi-track Turing machines, a specific type of Multi-tape Turing machine,
contain multiple tracks but just one tape head reads and writes on all tracks.
Here, a single tape head reads n symbols from n tracks at one step. It accepts
recursively enumerable languages like a normal single-track single-tape Turing
Machine accepts.

71

' tutorialspoint

SIMPLYEASYLEARMING

http://en.wikipedia.org/wiki/Multi-tape_Turing_machine

Automata Theory

A Multi-track Turing machine can be formally described as a 6-tuple (Q, X, Z, 9,
qo, F) where:

e Qs a finite set of states
e X is the tape alphabet
e 2 is the input alphabet
e O is a relation on states and symbols where
0(Q,, [a1, az, a3,....]) = (Qj, [b1, b2, bs,....], Left_shift or Right_shift)
e (o is the initial state

e F is the set of final states

Note: For every single-track Turing Machine S, there is an equivalent multi-
track Turing Machine M such that L(S) = L(M).

Non-Deterministic Turing machine

In a Non-Deterministic Turing Machine, for every state and symbol, there are a
group of actions the TM can have. So, here the transitions are not deterministic.
The computation of a non-deterministic Turing Machine is a tree of
configurations that can be reached from the start configuration.

An input is accepted if there is at least one node of the tree which is an accept
configuration, otherwise it is not accepted. If all branches of the computational
tree halt on all inputs, the non-deterministic Turing Machine is called a Decider
and if for some input, all branches are rejected, the input is also rejected.

A non-deterministic Turing machine can be formally defined as a 6-tuple (Q, X,
2, 0, o, B, F) where:

e Qs a finite set of states
e X is the tape alphabet
e 2 is the input alphabet
e O is a transition function;
0:Q x X— P(Q x X x {Left_shift, Right_shift}).

72

' tutorialspoint

SIMPLYEASYLEARMING

http://everything2.com/title/Non+Deterministic+Turing+Machine
http://everything2.com/title/state
http://everything2.com/title/symbol
http://everything2.com/title/Non+Deterministic+Turing+Machine
http://everything2.com/title/Non+Deterministic+Turing+Machine

Automata Theory

e Qo is the initial state
e B is the blank symbol

e F is the set of final states

Turing Machine with Semi-infinite Tape

A Turing Machine with a semi-infinite tape has a left end but no right end. The
left end is limited with an end marker.

En

Head

It is a two-track tape:

1. Upper track: It represents the cells to the right of the initial head position.

2. Lower track: It represents the cells to the left of the initial head position in
reverse order.

The infinite length input string is initially written on the tape in contiguous tape
cells.

The machine starts from the initial state qo and the head scans from the left end
marker ‘End’. In each step, it reads the symbol on the tape under its head. It
writes a new symbol on that tape cell and then it moves the head either into left
or right one tape cell. A transition function determines the actions to be taken.

It has two special states called accept state and reject state. If at any point of
time it enters into the accepted state, the input is accepted and if it enters into
the reject state, the input is rejected by the TM. In some cases, it continues to
run infinitely without being accepted or rejected for some certain input symbols.

Note: Turing machines with semi-infinite tape are equivalent to standard
Turing machines.

73

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Time and Space Complexity of a Turing Machine

For a Turing machine, the time complexity refers to the measure of the number
of times the tape moves when the machine is initialized for some input symbols
and the space complexity is the number of cells of the tape written.

Time complexity all reasonable functions:
T(n) = O(n log n)
TM's space complexity:

S(n) = O(n)

Linear Bounded Automata

A linear bounded automaton is a multi-track non-deterministic Turing machine
with a tape of some bounded finite length.

Length = function (Length of the initial input string, constant c)
Here,
Memory information < ¢ x Input information

The computation is restricted to the constant bounded area. The input alphabet
contains two special symbols which serve as left end markers and right end
markers which mean the transitions neither move to the left of the left end
marker nor to the right of the right end marker of the tape.

A linear bounded automaton can be defined as an 8-tuple (Q, X, X, qo, ML, Mg, 9,
F) where:

¢ Qs a finite set of states

e X is the tape alphabet

e 2 is the input alphabet

e (o is the initial state

e M, is the left end marker

e Mg is the right end marker where Mr# M,

e O is a transition function which maps each pair (state, tape symbol) to
(state, tape symbol, Constant ‘c’) where ¢ can be 0 or +1 or -1

e F is the set of final states

74

' tutorialspoint

LYEASYLEARMNINEG

Automata Theory

End End

Left End Marker Right End Marker

A deterministic linear bounded automaton is always context-sensitive and the
linear bounded automaton with empty language is undecidable.

75

tutorialspoint

PLYEASYLEARNING

/. DECIDABILITY

Decidability and Decidable Languages

A language is called Decidable or Recursive if there is a Turing machine which
accepts and halts on every input string w. Every decidable language is Turing-
Acceptable.

Non-Turing acceptable languages

Turing acceptable languages

Decidable
languages

A decision problem P is decidable if the language L of all yes instances to P is
decidable.

For a decidable language, for each input string, the TM halts either at the accept
or the reject state as depicted in the following diagram:

Decision on Halt

— Rejected

Input

O —» Accepted

Turing Machine

76

o

@' tutorialspoint

SIMPLYEASYLEARNING

Automata Theory

Example 1
Find out whether the following problem is decidable or not:

Is a number ‘m’ prime?

Solution

Prime numbers = {2, 3,5, 7, 11, 13, iy
Divide the number ‘m’ by all the numbers between ‘2’ and ‘Y m’ starting
from *2’.

If any of these numbers produce a remainder zero, then it goes to the
“Rejected state”, otherwise it goes to the “Accepted state”. So, here the

answer could be made by ‘Yes’ or ‘No’.

Hence, it is a decidable problem.

Example 2
Given a regular language L and string w, how can we check if w& L?

Solution

Take the DFA that accepts L and check if w is accepted

.......... o
meut e

string w :
—g»®
...................................... [, wel

DFA

Some more decidable problems are:

1. Does DFA accept the empty language?

2. Is LiN L,=@ for regular sets?

Note:

1. If a language L is decidable, then its complement L' is also decidable.

2. If a language is decidable, then there is an enumerator for it.

' tutorialspoint

SIMPLYEASYLEARMING

77

http://en.wikipedia.org/wiki/%C3%98_%28disambiguation%29

Automata Theory

Undecidable Languages

For an undecidable language, there is no Turing Machine which accepts the
language and makes a decision for every input string w (TM can make decision
for some input string though). A decision problem P is called “undecidable” if the
language L of all yes instances to P is not decidable. Undecidable languages are
not recursive languages, but sometimes, they may be recursively enumerable
languages.

Non-Turing acceptable languages

Undecidable languages

Decidable
languages

Example:

¢ The halting problem of Turing machine
e The mortality problem
¢ The mortal matrix problem

e The Post correspondence problem, etc.

TM Halting Problem

Input: A Turing machine and an input string w.

Problem: Does the Turing machine finish computing of the string w in a finite
number of steps? The answer must be either yes or no.

Proof: At first, we will assume that such a Turing machine exists to solve this
problem and then we will show it is contradicting itself. We will call this Turing
machine as a Halting machine that produces a ‘yes’ or ‘no’ in a finite amount
of time. If the halting machine finishes in a finite amount of time, the output
comes as ‘yes’, otherwise as ‘no’. The following is the block diagram of a Halting
machine:

78

' tutorialspoint

SIMPLYEASYLEARMING

http://en.wikipedia.org/wiki/Mortality_%28computability_theory%29
http://en.wikipedia.org/wiki/Post_correspondence_problem

Automata Theory

Input —— Yes (HM halts on input w)
string Halting

> Machine
—— No (HM does not halt on input w)

Now we will design an inverted halting machine (HM)' as:

e If H returns YES, then loop forever.
e If H returns NO, then halt.

The following is the block diagram of an ‘Inverted halting machine’:

Infinite loop

|nput Halting

string ' Machine

— No

Further, a machine (HM)2 which input itself is constructed as follows:

e If (HM); halts on input, loop forever.
e Else, halt.

Here, we have got a contradiction. Hence, the halting problem is undecidable.

Rice Theorem

Theorem:

L= {<M> | L (M) € P} is undecidable when p, a non-trivial property of the
Turing machine, is undecidable.

If the following two properties hold, it is proved as undecidable:

79

' tutorialspoint

SIMPLYEASYLEARMING

Automata Theory

Property 1: If M1 and M2 recognize the same language, then either
<M1><M2> €L or <M1> <M2>¢L

Property 2: For some M1 and M2 such that <M1> €L and <M2> ¢ L
Proof:
Let there are two Turing machines Xy and Xa.
Let us assume <X3i> € L such that
L(X1) =@ and <Xz>¢L.
For an input ‘w’ in a particular instant, perform the following steps:

1. If X accepts w, then simulate Xz on x.
2. Run Z on input <W>.

3. If Z accepts <W>, Reject it; and if Z rejects <W>, accept it.
If X accepts w, then
L(W) = L(X2) and <W>¢P
If M does not accept w, then
L(W) =L(Xy) =¢ and <W>¢eP

Here the contradiction arises. Hence, it is undecidable.

Undecidability of Post Correspondence Problem

The Post Correspondence Problem (PCP), introduced by Emil Post in 1946, is an
undecidable decision problem. The PCP problem over an alphabet ¥ is stated as
follows:

Given the following two lists, M and N of non-empty strings over X:

M = (Xx1,%X3,X3, cov eue e ,Xn)

N: (yl;yz,y3, ,yn)

We can say that there is a Post Correspondence Solution, if for some
[1,i2) e v e e i, Where 1 < i; < n, the condition x;,x; = y;,y; satisfies.
80

' tutorialspoint

SIMPLYEASYLEARMING

http://en.wikipedia.org/wiki/Emil_Post
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Decision_problem

Automata Theory

Example
Find whether the lists

M = (abb, aa, aaa) and N = (bba, aaa, aa)

have a Post Correspondence Solution?

Solution
X1 X2 X3
Abb aa aaa
N Bba aaa aa
Here,

X2 X1X3 = ‘aaabbaaa’
and y2Yyiys = ‘aaabbaaa’
We can see that

X2 X1X3 = Y2Y1Y3

Hence, the solution is i=2, j =1, and k=3.

Example 2:

Find whether the lists M = (ab, bab, bbaaa) and N = (a, ba, bab) have a Post
Correspondence Solution?

Solution
X1 X2 X3
ab bab bbaaa
N a ba bab

In this case, there is no solution because:
| Xx2x1x3 | # | y2y1Yy3s| (Lengths are not same)

Hence, it can be said that this Post Correspondence Problem is undecidable.

81

' tutorialspoint

SIMPLYEASYLEARMING

